Skip to main content
Log in

Predicting sub-cellular localization of tRNA synthetases from their primary structures

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Since endo-symbiotic events occur, all genes of mitochondrial aminoacyl tRNA synthetase (AARS) were lost or transferred from ancestral mitochondrial genome into the nucleus. The canonical pattern is that both cytosolic and mitochondrial AARSs coexist in the nuclear genome. In the present scenario all mitochondrial AARSs are nucleus-encoded, synthesized on cytosolic ribosomes and post-translationally imported from the cytosol into the mitochondria in eukaryotic cell. The site-based discrimination between similar types of enzymes is very challenging because they have almost same physico-chemical properties. It is very important to predict the sub-cellular location of AARSs, to understand the mitochondrial protein synthesis. We have analyzed and optimized the distinguishable patterns between cytosolic and mitochondrial AARSs. Firstly, support vector machines (SVM)-based modules have been developed using amino acid and dipeptide compositions and achieved Mathews correlation coefficient (MCC) of 0.82 and 0.73, respectively. Secondly, we have developed SVM modules using position-specific scoring matrix and achieved the maximum MCC of 0.78. Thirdly, we developed SVM modules using N-terminal, intermediate residues, C-terminal and split amino acid composition (SAAC) and achieved MCC of 0.82, 0.70, 0.39 and 0.86, respectively. Finally, a SVM module was developed using selected attributes of split amino acid composition (SA-SAAC) approach and achieved MCC of 0.92 with an accuracy of 96.00%. All modules were trained and tested on a non-redundant data set and evaluated using fivefold cross-validation technique. On the independent data sets, SA-SAAC based prediction model achieved MCC of 0.95 with an accuracy of 97.77%. The web-server ‘MARSpred’ based on above study is available at http://www.imtech.res.in/raghava/marspred/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Antonellis A, Green ED (2008) The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 9:87–107

    Article  PubMed  CAS  Google Scholar 

  • Baker MJ, Frazier AE, Gulbis JM, Ryan MT (2007) Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol 17:456–464

    Article  PubMed  CAS  Google Scholar 

  • Baldi P, Brunak S, Chauvin Y, Andersen CA, Nielsen H (2000) Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16:412–424

    Article  PubMed  CAS  Google Scholar 

  • Berg P (1961) Specificity in protein synthesis. Annu Rev Biochem 30:293–324

    Article  CAS  Google Scholar 

  • Bhasin M, Raghava GPS (2004) Classification of nuclear receptors based on amino acid composition and dipeptide composition. J Biol Chem 279:23262–23266

    Article  PubMed  CAS  Google Scholar 

  • Bhasin M, Raghava GPS (2005) GPCRsclass: a web tool for classification of amine type of G-protein coupled receptors. Nucleic Acids Res 33:W143–W147

    Article  PubMed  CAS  Google Scholar 

  • Brindefalk B, Viklund J, Larsson D, Thollesson M, Andersson SG (2007) Origin and evolution of the mitochondrial aminoacyl-tRNA synthetases. Mol Biol Evol 24:743–756

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007) Recent progresses in protein subcellular location prediction. Anal Biochem 370:1–16

    Article  PubMed  CAS  Google Scholar 

  • Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241:779–786

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311

    Article  PubMed  CAS  Google Scholar 

  • Duchêne AM, Pujol C, Maréchal-Drouard L (2009) Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria. Curr Genet 55:1–18

    Article  PubMed  Google Scholar 

  • Español Y, Thut D, Schneider A, de Pouplana LR (2009) A mechanism for functional segregation of mitochondrial and cytosolic genetic codes. Proc Natl Acad Sci USA 106(46):19420–19425

    Article  PubMed  Google Scholar 

  • Garg A, Bhasin M, Raghava GPS (2005) SVM-based method for subcellular localization of human proteins using amino acid compositions, their order and similarity search. J Biol Chem 280(15):14427–14432

    Article  PubMed  CAS  Google Scholar 

  • Guda C, Guda P, Fahy E, Subramaniam S (2004) MITOPRED: a web server for the prediction of mitochondrial proteins. Nucleic Acids Res 32:W372–W374

    Article  PubMed  CAS  Google Scholar 

  • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA Data Mining Software: an update. SIGKDD Explorations 11(1):10–18

  • Joachims T (1999) Making large-scale SVM learning particles. In: Scholkopf B, Berges C, Smola A (eds) Advances in kernel methods support vector learning. MIT Press, Cambridge, pp 42–56

    Google Scholar 

  • Kaur H, Raghava GPS (2004) A neural network method for prediction of beta-turn types in proteins using evolutionary information. Bioinformatics 20:2751–2758

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Raghava GPS (2009) Prediction of nuclear proteins using SVM and HMM models. BMC Bioinformatics 10:22

    Article  PubMed  Google Scholar 

  • Kumar M, Bhasin M, Natt NK, Raghava GPS (2005) BhairPred: a webserver for prediction of beta-hairpins in proteins from multiple alignment information using ANN and SVM techniques. Nucleic Acids Res 33:W154–W159

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Verma R, Raghava GPS (2006) Prediction of mitochondrial proteins using support vector machine and hidden Markov model. J Biol Chem 281(9):5357–5363

    Article  PubMed  CAS  Google Scholar 

  • Kumar M, Gromiha MM, Raghava GPS (2007) Identification of DNA-binding proteins using support vector machines and evolutionary profiles. BMC Bioinformatics 8:463

    Article  PubMed  CAS  Google Scholar 

  • Lee JW, Beebe K, Nangle LA, Jang J, Longo-Guess CM, Cook SA, Muriel TD, Sundberg JP, Schimmel P, Ackerman SL (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeration. Nature 443:50–55

    Article  PubMed  CAS  Google Scholar 

  • Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large datasets of proteins or nucleotide sequences. Bioinformatics 22:1658–1659

    Article  PubMed  CAS  Google Scholar 

  • Miyaki M, Iijima T, Shiba K, Aki T, Kita Y, Yasuno M, Mori T, Kuroki T, Iwama T (2001) Alterations of repeated sequences in 5′ upstream and coding regions in colorectal tumors from patients with hereditary nonpolyposis colorectal cancer and Turcot syndrome. Oncogene 20:5215–5218

    Article  PubMed  CAS  Google Scholar 

  • Panwar B, Raghava GPS (2010) Prediction and classification of aminoacyl tRNA synthetases using PROSITE domains. BMC Genomics 11:507

    Article  PubMed  Google Scholar 

  • Park SG, Schimmel P, Kim S (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci USA 105:11043–11049

    Article  PubMed  CAS  Google Scholar 

  • Raghava GPS, Han JH (2005) Correlation and prediction of gene expression level from amino acid and dipeptide composition of its protein. BMC Bioinformatics 6:59

    Article  PubMed  Google Scholar 

  • Rajbhandary UL (1997) Once there were twenty. Proc Natl Acad Sci USA 94:11761–11763

    Article  PubMed  CAS  Google Scholar 

  • Scheper GC, van der Klok T, van Andel RJ, van Berkel CG, Sissler M, Smet J, Muravina TI, Serkov SV, Uziel G, Bugiani M, Schiffmann R, Krägeloh-Mann I, Smeitink JA, Florentz C, Van Coster R, Pronk JC, van der Knaap MS (2007) Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 39:534–539

    Article  PubMed  CAS  Google Scholar 

  • Schimmel P (2008) Development of tRNA synthetases and connection to genetic code and disease. Protein Sci 17:1643–1652

    Article  PubMed  CAS  Google Scholar 

  • Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics 4(6):1581–1590

    Article  PubMed  CAS  Google Scholar 

  • t Hart LM, Hansen T, Rietveld I, Dekker JM, Nijpels G, Janssen GM, Arp PA, Uitterlinden AG, Jørgensen T, Borch-Johnsen K, Pols HA, Pedersen O, van Duijn CM, Heine RJ, Maassen JA (2005) Evidence that the mitochondrial leucyl tRNA synthetase (LARS2) gene represents a novel type 2 diabetes susceptibility gene. Diabetes 54:1892–1895

    Article  CAS  Google Scholar 

  • Unseld M, Marienfeld JR, Brandt P, Brennicke A (1997) The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366, 924 nucleotides. Nat Genet 15:57–61

    Article  PubMed  CAS  Google Scholar 

  • Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Netw 10:988–999

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Council of Scientific and Industrial Research (CSIR) and Department of Biotechnology (DBT), Government of India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. P. S. Raghava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panwar, B., Raghava, G.P.S. Predicting sub-cellular localization of tRNA synthetases from their primary structures. Amino Acids 42, 1703–1713 (2012). https://doi.org/10.1007/s00726-011-0872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0872-8

Keywords

Navigation