Skip to main content

Advertisement

Log in

Oxidation mimicking substitution of conservative cysteine in recoverin suppresses its membrane association

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Recoverin belongs to the family of intracellular Ca2+-binding proteins containing EF-hand domains, neuronal calcium sensors (NCS). In photoreceptor outer segments, recoverin is involved into the recovery of visual cycle via Ca2+-dependent interaction with disk membranes and inhibition of rhodopsin kinase. The function of a conservative within NCS family Cys residue in the inactive EF-loop 1 remains unclear, but previous study has shown its vulnerability to oxidation under mild oxidizing conditions. To elucidate the influence of oxidation of the conservative Cys39 in recoverin the properties of its C39D mutant, mimicking oxidative conversion of Cys39 into sulfenic, sulfinic or sulfonic acids have been studied using intrinsic fluorescence, circular dichroism, and equilibrium centrifugation methods. The C39D substitution results in essential changes in structural, physico-chemical and physiological properties of the protein: it reduces α-helical content, decreases thermal stability and suppresses protein affinity for photoreceptor membranes. The latter effect precludes proper functioning of the Ca2+-myristoyl switch in recoverin. The revealed significance of oxidation state of Cys39 for maintaining the protein functional status shows that it may serve as redox sensor in vision and suggests an explanation of the available data on localization and light-dependent translocation of recoverin in rod photoreceptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3

Similar content being viewed by others

Abbreviations

NCS:

Neuronal calcium sensor

ROS:

Reactive oxygen species

WT:

Recombinant wild-type recoverin

HEPES:

N-(2-hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid)

Tris:

Tris(hydroxymethyl) aminomethane

EDTA:

Ethylenediaminetetraacetic acid

CD:

Circular dichroism

GCAP:

Guanylate cyclase activated protein

λ max :

Position of fluorescence spectrum maximum

T 1/2 :

Mid-transition temperature

FDPB:

Finite difference Poisson–Boltzmann method

NMR:

Nuclear magnetic resonance

References

  • Alekseev AM, Shulga-Morskoy SV, Zinchenko DV, Shulga-Morskaya SA, Suchkov DV, Vaganova SA, Senin II, Zargarov AA, Lipkin VM, Akhtar M, Philippov PP (1998) Obtaining and characterization of EF-hand mutants of recoverin. FEBS Lett 440:116–118

    Article  PubMed  CAS  Google Scholar 

  • Anderson RE, Kretzer FL, Rapp LM (1994) Free radicals and ocular disease. Adv Exp Med Biol 366:73–86

    Article  PubMed  CAS  Google Scholar 

  • Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45:115–134

    Article  PubMed  CAS  Google Scholar 

  • Blum HE, Lehky P, Kohler L, Stein EA, Fischer EH (1977) Comparative properties of vertebrate parvalbumins. J Biol Chem 252:2834–2838

    PubMed  CAS  Google Scholar 

  • Boulton M, Rozanowska M, Rozanowski B (2001) Retinal photodamage. J Photochem Photobiol 64:144–161

    Article  CAS  Google Scholar 

  • Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8:182–193

    Article  PubMed  CAS  Google Scholar 

  • Burstein EA (1977) Intrinsic protein fluorescence: origin and applications. In: Biophysics, vol 7. VINITI, Moscow

  • Chen CK (2002) Recoverin and rhodopsin kinase. Adv Exp Med Biol 514:101–107

    Article  PubMed  CAS  Google Scholar 

  • Chen CK, Woodruff ML, Chen FS, Chen D, Fain GL (2010) Background light produces a recoverin-dependent modulation of activated-rhodopsin lifetime in mouse rods. J Neurosci 30:1213–1220

    Article  PubMed  CAS  Google Scholar 

  • Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22:79–131

    Article  PubMed  CAS  Google Scholar 

  • Forman HJ, Maiorino M, Ursini F (2010) Signaling functions of reactive oxygen species. Biochemistry 49:835–842

    Article  PubMed  CAS  Google Scholar 

  • Gensch T, Komolov KE, Senin II, Philippov PP, Koch KW (2007) Ca2+-dependent conformational changes in the neuronal Ca2+-sensor recoverin probed by the fluorescent dye Alexa647. Proteins 66:492–499

    Article  PubMed  CAS  Google Scholar 

  • Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107:1058–1070

    Article  PubMed  CAS  Google Scholar 

  • Jacob C, Holme AL, Fry FH (2004) The sulfinic acid switch in proteins. Org Biomol Chem 2:1953–1956

    Article  PubMed  CAS  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kataoka M, Mihara K, Tokunaga F (1993) Recoverin alters its surface properties depending on both calcium- binding and N-terminal myristoylation. J Biochem (Tokyo) 114:535–540

    CAS  Google Scholar 

  • Khandhadia S, Lotery A (2010) Oxidation and age-related macular degeneration: insights from molecular biology. Expert Rev Mol Med 12:e34

    Article  PubMed  Google Scholar 

  • Lim SY, Raftery MJ, Goyette J, Hsu K, Geczy CL (2009) Oxidative modifications of S100 proteins: functional regulation by redox. J Leukoc Biol 86:577–587

    Article  PubMed  CAS  Google Scholar 

  • Makino CL, Dodd RL, Chen J, Burns ME, Roca A, Simon MI, Baylor DA (2004) Recoverin regulates light-dependent phosphodiesterase activity in retinal rods. J Gen Physiol 123:729–741

    Article  PubMed  CAS  Google Scholar 

  • Miceli MV, Liles MR, Newsome DA (1994) Evaluation of oxidative processes in human pigment epithelial cells associated with retinal outer segment phagocytosis. Exp Cell Res 214:242–249

    Article  PubMed  CAS  Google Scholar 

  • Noell WK, Walker VS, Kang BS, Berman S (1966) Retinal damage by light in rats. Invest Ophthalmol 5:450–473

    PubMed  CAS  Google Scholar 

  • Organisciak DT, Vaughan DK (2010) Retinal light damage: mechanisms and protection. Prog Retin Eye Res 29:113–134

    Article  PubMed  Google Scholar 

  • Permyakov SE, Cherskaya AM, Senin II, Zargarov AA, Shulga-Morskoy SV, Alekseev AM, Zinchenko DV, Lipkin VM, Philippov PP, Uversky VN, Permyakov EA (2000) Effects of mutations in the calcium-binding sites of recoverin on its calcium affinity: evidence for successive filling of the calcium binding sites. Prot Eng 13:783–790

    Article  CAS  Google Scholar 

  • Permyakov SE, Cherskaya AM, Wasserman LA, Khokhlova TI, Senin II, Zargarov AA, Zinchenko DV, Zernii EY, Lipkin VM, Philippov PP, Uversky VN, Permyakov EA (2003) Recoverin is a zinc-binding protein. J Proteome Res 2:51–57

    Article  PubMed  CAS  Google Scholar 

  • Permyakov SE, Nazipova AA, Denesyuk AI, Bakunts AG, Zinchenko DV, Lipkin VM, Uversky VN, Permyakov EA (2007) Recoverin as a redox-sensitive protein. J Proteome Res 6:1855–1863

    Article  PubMed  CAS  Google Scholar 

  • Permyakov SE, Bakunts AG, Denesyuk AI, Knyazeva EL, Uversky VN, Permyakov EA (2008) Apo-parvalbumin as an intrinsically disordered protein. Proteins 72:822–836

    Article  PubMed  CAS  Google Scholar 

  • Poole LB, Karplus PA, Claiborne A (2004) Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44:325–347

    Article  PubMed  CAS  Google Scholar 

  • Saccà SC, Izzotti A, Rossi P, Traverso C (2007) Glaucomatous outflow pathway and oxidative stress. Exp Eye Res 84:389–399

    Article  PubMed  Google Scholar 

  • Schipper HM (2004) Redox neurology: visions of an emerging subspecialty. Ann N Y Acad Sci 1012:342–355

    Article  PubMed  CAS  Google Scholar 

  • Senin II, Koch KW, Akhtar M, Philippov PP (2002a) Ca2+-dependent control of rhodopsin phosphorylation. Adv Exp Med Biol 514:69–99

    Article  PubMed  CAS  Google Scholar 

  • Senin II, Fischer T, Komolov KE, Zinchenko DV, Philippov PP, Koch KW (2002b) Ca2+-myristoyl switch in the neuronal calcium sensor recoverin requires different functions of Ca2+-binding sites. J Biol Chem 277:50365–50372

    Article  PubMed  CAS  Google Scholar 

  • Spector A (1995) Oxidative stress-induced cataract: mechanism of action. FASEB J 9:1173–1182

    PubMed  CAS  Google Scholar 

  • Sreerama N, Venyaminov SY, Woody RW (2000) Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis. Anal Biochem 287:243–251

    Article  PubMed  CAS  Google Scholar 

  • Strissel KJ, Lishko PV, Trieu LH, Kennedy MJ, Hurley JB, Arshavsky VY (2005) Recoverin undergoes light-dependent intracellular translocation in rod photoreceptors. J Biol Chem 280:29250–29255

    Article  PubMed  CAS  Google Scholar 

  • Truscott RJ (2005) Age-related nuclear cataract—oxidation is the key. Exp Eye Res 80:709–725

    Article  PubMed  CAS  Google Scholar 

  • Valentine KG, Mesleh MF, Opella SJ, Ikura M, Ames JB (2003) Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers. Biochemistry 42:6333–6340

    Article  PubMed  CAS  Google Scholar 

  • Weiergraber OH, Senin II, Zernii EY, Churumova VA, Kovaleva NA, Nazipova AA, Permyakov SE, Permyakov EA, Philippov PP, Granzin J, Koch KW (2006) Tuning of a neuronal calcium sensor. J Biol Chem 281:37594–37602

    Article  PubMed  Google Scholar 

  • Winkler BS (2008) An hypothesis to account for the renewal of outer segments in rod and cone photoreceptor cells: renewal as a surrogate antioxidant. Invest Ophthalmol Vis Sci 49:3259–3261

    Article  PubMed  Google Scholar 

  • Young RW (1967) The renewal of photoreceptor cell outer segments. J Cell Biol 33:61–72

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman MC, Davisson RL (2004) Redox signaling in central neural regulation of cardiovascular function. Prog Biophys Mol Biol 84:125–149

    Article  PubMed  CAS  Google Scholar 

  • Zozulya S, Stryer L (1992) Calcium-myristoyl protein switch. Proc Natl Acad Sci USA 89:11569–11573

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant to P.E.A. from the Program of the Russian Academy of Sciences “Molecular and Cellular Biology”, Grant to S.E.P. from the President of Russia (No. MK-4581.2007.4), Grants to A.I.D. from Stiftelsens för Åbo Akademi Forskningsinstitut and the Sigrid Jusélius Foundation, Grants from Russian Foundation for Basic Research to I.I.S. (09-04-01778-a) and E.Yu.Z (09-04-00666-a) and Grant to I.I.S. from the President of Russia (No. MD-4423.2010.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan I. Senin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Permyakov, S.E., Zernii, E.Y., Knyazeva, E.L. et al. Oxidation mimicking substitution of conservative cysteine in recoverin suppresses its membrane association. Amino Acids 42, 1435–1442 (2012). https://doi.org/10.1007/s00726-011-0843-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-0843-0

Keywords

Navigation