Skip to main content

Advertisement

Log in

Diacyl glycerol arginine-based surfactants: biological and physicochemical properties of catanionic formulations

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

In this paper, we report on a catanionic vesicles-based strategy to reduce the cytotoxicity of the diacyl glycerol arginine-based synthetic surfactants 1,2-dimyristoyl-rac-glycero-3-O-(N α-acetyl-l-arginine) hydrochloride (1414RAc) and 1,2-dilauroyl-rac-glycero-3-O-(N α-acetyl-l-arginine) hydrochloride (1212RAc). The behavior of these surfactants was studied either as pure components or after their formulation as pseudo-tetra-chain catanionic mixtures with phosphatidylglycerol (PG) and as cationic mixtures with 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) used as control. The antimicrobial activity of the negatively charged formulations against Acinetobacter baumannii was maintained with respect to the surfactant alone, while a significant improvement of the antimicrobial activity against Staphylococcus aureus was observed, together with a strong decrease of hemolytic activity. The influence of the net charge of the catanionic vesicles on membrane selectivity was studied using model membranes. The dynamics of surface tension changes induced by the addition of 1414RAc/PG aqueous dispersions into phospholipid monolayers composed of zwitterionic DPPC as model system for mammalian membranes and of negatively charged PG mimicking cytoplasmic membrane of Gram-positive bacteria was followed by tensiometry. Our results constitute a proof of principle that tuning formulation can reduce the cytotoxicity of many surfactants, opening their possible biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

1212R:

1,2-Dilauroyl-glycero-3-O-l-arginine dihydrochloride

1212RAc:

1,2-Dilauroyl-rac-glycero-3-O-(N α-acetyl-l-arginine) hydrochloride

1414R:

1,2-Dimyristoyl-glycero-3-O-l-arginine dihydrochloride

1414RAc:

1,2-Dimyristoyl-rac-glycero-3-O-(N α-acetyl-l-arginine) hydrochloride

DPPC:

1,2-Dipalmitoyl-sn-glycero-3-phosphatidylcholine

HC50 :

Surfactant concentration inducing 50% of hemolysis

HPLC:

High-performance liquid chromatography

MIC:

Minimum inhibitory concentration

PG:

Phosphatidylglycerol

SD:

Standard deviation

OD:

Optical density

References

  • Benavides T, Mitjans M, Martinez V, Clapes P, Infante MR, Clothier RH, Vinardell MP (2004) Assessment of primary eye and skin irritants by in vitro cytotoxicity and phototoxicity models: an in vitro approach of new arginine-based surfactant-induced irritation. Toxicology 197:229–237. doi:10.1016/j.tox.2004.01.011

    Article  CAS  PubMed  Google Scholar 

  • Bonincontro A, Spigone E, Pena MR, Letizia C, La Mesa C (2006) Lysozyme binding onto cat-anionic vesicles. J Colloid Interface Sci 304:342–347. doi:10.1016/j.jcis.2006.09.046

    Article  CAS  PubMed  Google Scholar 

  • Bonincontro A, Falivene M, La Mesa C, Risuleo G, Pena MR (2008) Dynamics of DNA adsorption on and release from SDS-DDAB cat-anionic vesicles: a multitechnique study. Langmuir 24:1973–1978. doi:10.1021/la701730h

    Article  CAS  PubMed  Google Scholar 

  • Bramer T, Dew N, Edsman K (2007) Pharmaceutical applications for catanionic mixtures. J Pharm Pharmacol 59:1319–1334. doi:10.1211/jpp.59.10.0001

    Article  CAS  PubMed  Google Scholar 

  • Brito RO, Marques EF, Silva SG, Vale ML, Gomes P, Araujo MJ, Rodriguez-Borges JE, Infante MR, Garcia MT, Ribosa I, Vinardell MP, Mitjans M (2009) Physicochemical and toxicological properties of novel amino acid-based amphiphiles and their spontaneously formed catanionic vesicles. Colloids Surf B 72:80–87. doi:10.1016/j.colsurfb.2009.03.017

    Article  CAS  Google Scholar 

  • Burgo P, Aicart E, Junquera E (2007) Mixed vesicles and mixed micelles of the cationic–cationic surfactant system: didecyldimethylammonium bromide/dodecylethyldimethylammonium bromide/water. Colloids Surf A 292:165–172. doi:10.1016/j.colsurfa.2006.06.019

    Article  Google Scholar 

  • Caria A, Khan A (1996) Phase behavior of catanionic surfactant mixtures: sodium bis(2-ethylhexyl) sulfosuccinate–didocyldimethylammonium bromide–water system. Langmuir 12:6282–6290. doi:10.1021/la960581z

    Article  CAS  Google Scholar 

  • Denyer SP (1995) Mechanisms of action of antibacterial biocides. Int Biodeterior Biodegradation 36:227–245

    Article  CAS  Google Scholar 

  • Epand RF, Infante MR, Flanagan TD, Epand RM (1998) Properties of lipoamino acids incorporated into membrane bilayers. Biochim Biophys Acta 1373:67–75

    Article  CAS  PubMed  Google Scholar 

  • Fogt A, Hägerstrand H, Isomaa B (1995) Effects of N,N′-bisdimethyl-1,2-ethanediamine dichloride, a double-chain surfactant, on membrane-related functions in human erythrocytes. Chem Biol Interact 94:147–155

    Article  CAS  PubMed  Google Scholar 

  • Infante MR, Molinero J, Erra P, Julia R, Garcia-Dominguez JJ (1985) A comparative-study on surface-active and antimicrobial properties of some N α-lauroyl-l α, omega dibasic amino-acids derivatives. Fette Seifen Anstrichmittel 87:309–313

    Article  CAS  Google Scholar 

  • Kamenka N, Chorro M, Talmon Y, Zana R (1992) Study of mixed aggregates in aqueous-solutions of sodium dodecyl-sulfate and dodecyltrimethylammonium bromide. Colloids Surf 67:213–222

    Article  CAS  Google Scholar 

  • Lohner K, Sevcsik E, Pabst G (2008) Liposome-based biomembrane mimetic systems: implications for lipid–peptide interactions. Adv Planar Lipid Bilayers Liposomes 6:103–137. doi:10.1016/S1554-4516(07)06005-X

    Article  CAS  Google Scholar 

  • Lozano N, Perez L, Pons R, Luque-Ortega JR, Fernandez-Reyes M, Rivas L, Pinazo A (2008) Interaction studies of diacyl glycerol arginine-based surfactants with DPPC and DMPC monolayers, relation with antimicrobial activity. Colloids Surf A 319:196–203. doi:10.1016/j.colsurfa.2007.07.015

    Article  CAS  Google Scholar 

  • Lozano N, Pinazo A, La Mesa C, Perez L, Andreozzi P, Pons R (2009) Catanionic vesicles formed with arginine-based surfactants and 1,2-dipalmitoyl-sn-glycero-3-phosphate monosodium salt. J Phys Chem B 113:6321–6327. doi:10.1021/jp810671p

    Article  CAS  PubMed  Google Scholar 

  • Lozano N, Pinazo A, Perez L, Pons R (2010) Dynamic properties of cationic diacyl-glycerol-arginine-based surfactant/phospholipid mixtures at the air/water interface. Langmuir 26:2559–2566. doi:10.1021/la902850j

    Article  CAS  PubMed  Google Scholar 

  • Marques EF, Brito RO, Wang YJ, Silva BFB (2006) Thermotropic phase behavior of triple-chained catanionic surfactants with varying headgroup chemistry. J Colloid Interface Sci 294:240–247. doi:10.1016/j.jcis.2005.07.021

    Article  CAS  PubMed  Google Scholar 

  • Marques EF, Brito RO, Silva SG, Rodriguez-Borges JE, Vale ML, Gomes P, Araujo MJ, Soderman O (2008) Spontaneous vesicle formation in catanionic mixtures of amino acid-based surfactants: chain length symmetry effects. Langmuir 24:11009–11017. doi:10.1021/la801518h

    Article  CAS  PubMed  Google Scholar 

  • Marsh D (1996) Lateral pressure in membranes. Biochim Biophys Acta Biomembr 1286:183–223. doi:10.1016/S0304-4157(96)00009-3

    CAS  Google Scholar 

  • Miyagishi S, Asakawa T, Nishida M (1989) Hydrophobicity and surface-activities of sodium salts of N-dodecanoyl amino-acids. J Colloid Interface Sci 131:68–73

    Article  CAS  Google Scholar 

  • Moran C, Infante MR, Clapes P (2001) Synthesis of glycero amino acid-based surfactants. Part 1. Enzymatic preparation of rac-1-O-(N α-acetyl-l-aminoacyl)glycerol derivatives. J Chem Soc, Perkin Trans I, 2063-2070. doi:10.1039/b103132p

  • Moran C, Infante MR, Clapes P (2002) Synthesis of glycero amino acid-based surfactants. Part 2. Lipase-catalysed synthesis of 1-O-lauroyl-rac-glycero-3-O-(N α-acetyl-l-amino acid) and 1,2-di-O-lauroyl-rac-glycero-3-O-(N α-acetyl-l-amino acid) derivatives. J Chem Soc, Perkin Trans I 1124–1134. doi:10.1039/hb200577h

  • Papanastasiou EA, Hua Q, Sandouk A, Son U, Christenson AJ, Van Hoek ML, Bishop BM (2009) Role of acetylation and charge in antimicrobial peptides based on human β-defensin-3. APMIS 117:492–499. doi:10.1111/j.1600-0463.2009.02460.x

    Article  CAS  PubMed  Google Scholar 

  • Perez L, Torres JL, Manresa A, Solans C, Infante MR (1996) Synthesis, aggregation, and biological properties of a new class of gemini cationic amphiphilic compounds from arginine, bis(Args). Langmuir 12:5296–5301

    Article  CAS  Google Scholar 

  • Perez L, Infante MR, Angelet M, Clapes P, Pinazo A (2004a) Glycerolipid arginine-based surfactants: synthesis and surface active properties. Prog Colloid Polym Sci 123:210–216. doi:10.1007/b11628

    CAS  Google Scholar 

  • Perez L, Infante MR, Pons R, Moran MC, Vinardell P, Mitjans M, Pinazo A (2004b) A synthetic alternative to natural lecithins with antimicrobial properties. Colloids Surf B 35:235–242. doi:10.1016/j.colsurfb.2004.03.014

    Article  CAS  Google Scholar 

  • Peypoux F, Laprevote O, Pagadoy M, Wallach J (2004) N-Acyl derivatives of Asn, new bacterial N-acyl d-amino acids with surfactant activity. Amino Acids 26:209–214. doi:10.1007/s00726-003-0056-2

    Article  CAS  PubMed  Google Scholar 

  • Pinazo A, Perez L, Infante MR, Pons R (2004) Unconventional vesicle-to-ribbon transition behaviour of diacyl glycerol amino acid-based surfactants in extremely diluted systems induced by pH-concentration effects. Phys Chem Chem Phys 6:1475–1481. doi:10.1039/b313313n

    Article  CAS  Google Scholar 

  • Pinazo A, Angelet M, Pons R, Lozano M, Infante MR, Perez L (2009) Lysine–bisglycidol conjugates as novel cationic surfactants. Langmuir 25:7803–7814. doi:10.1021/la901675p

    Article  CAS  PubMed  Google Scholar 

  • Pons R, Pinazo A, Lozano N, Rivas L, Fernandez-Reyes M, Luque-Ortega JR, Perez L, Infante MR, Moran C (2009) Formulaciones de lipoaminoácidos catiónicos con menor poder hemolítico basadas en la formación de pares cataniónicos. Spanish Pat. Appl. ES1641.261, November 13

  • Rideal E, Taylor FH (1957) On haemolysis by anionic detergents. Proc R Soc Lond B 146:225–241

    Article  CAS  Google Scholar 

  • Rideal E, Taylor FH (1958) On haemolysis and haemolytic acceleration. Proc R Soc Lond B 148:450–464

    Article  CAS  PubMed  Google Scholar 

  • Russell AD (1995) Mechanisms of bacterial resistance to biocides. Int Biodeterior Biodegrad 36:247–265

    Google Scholar 

  • Sanson A, Egret-Chalier M, Bouloussa O, Maget-Dana R, Ptak M (1987) N-acyl aminoacids: amphiphilic properties and interactions with the lipid bilayers. In: Mittal KL, Bothorel P (eds) Surfactant in solution, vol 5, pp 793–805

  • Saugar JM, Rodriguez-Hernandez MJ, de la Torre BG, Pachon-Ibanez ME, Fernandez-Reyes M, Andreu D, Pachon J, Rivas L (2006) Activity of cecropin A-melittin hybrid peptides against colistin-resistant clinical strains of Acinetobacter baumannii: molecular basis for the differential mechanisms of action. Antimicrob Agents Chemother 50:1251–1256. doi:10.1128/AAC.50.4.1251-1256.2006

    Article  CAS  PubMed  Google Scholar 

  • Valko EI, DuBois AS (1945) Correlation between antibacterial power and chemical structure of higher alkyl ammonium ions. J Bacteriol 50:481–490

    Google Scholar 

  • Vieira DB, Carmona-Ribeiro AM (2006) Cationic lipids and surfactants as antifungal agents: mode of action. J Antimicrob Chemother 58:760–767. doi:10.1093/jac/dk1312

    Article  CAS  PubMed  Google Scholar 

  • Vinardell MP, Benavides T, Mitjans M, Infante MR, Clapes P, Clothier R (2008) Comparative evaluation of cytotoxicity and phototoxicity of mono and diacyl glycerol amino acid-based surfactants. Food Chem Toxicol 46:3837–3841. doi:10.1016/j.fct.2008.10.007

    Article  CAS  PubMed  Google Scholar 

  • Xia J, Xia Y, Nnanna IA (1995) Structure–function relationship of acyl amino acid surfactants: surface activity and antimicrobial properties. J Agric Food Chem 43:867–871

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the invaluable advice, suggestions, comments and critical reading of the manuscript by Dr. Luís Rivas and Dra. María Fernández-Reyes from the Centro de Investigaciones Biológicas (CIB-CSIC) of Madrid on biological experiments. Financial support from the Spanish Ministry of Science and Innovation (CTQ2007-604091/BQU and CTQ2009-14151-CO2-01) and Generalitat de Catalunya (2009SGR1331) is gratefully acknowledged. We are also grateful to Ms. Imma Carrera for technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aurora Pinazo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lozano, N., Pérez, L., Pons, R. et al. Diacyl glycerol arginine-based surfactants: biological and physicochemical properties of catanionic formulations. Amino Acids 40, 721–729 (2011). https://doi.org/10.1007/s00726-010-0710-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0710-4

Keywords

Navigation