Skip to main content

Advertisement

Log in

Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Screening for new bioactive peptides in South American anurans has been pioneered in frogs of the genus Phyllomedusa. All frogs of this genus have venomous skin secretions, i.e., a complex mixture of bioactive peptides against potential predators and pathogens that presumably evolved in a scenario of predator–prey interaction and defense against microbial invasion. For every new anuran species studied new peptides are found, with homologies to hormones, neurotransmitters, antimicrobials, and several other peptides with unknown biological activity. From Vittorio Erspamer findings, this genus has been reported as a “treasure store” of bioactive peptides, and several groups focus their research on these species. From 1966 to 2009, more than 200 peptide sequences from different Phyllomedusa species were deposited in UniProt and other databases. During the last decade, the emergence of high-throughput molecular technologies involving de novo peptide sequencing via tandem mass spectrometry, cDNA cloning, pharmacological screening, and surface plasmon resonance applied to peptide discovery, led to fast structural data acquisition and the generation of peptide molecular libraries. Research groups on bioactive peptides in Brazil using these new technologies, accounted for the exponential increase of new molecules described in the last decade, much higher than in any previous decades. Recently, these secretions were also reported as a rich source of multiple antimicrobial peptides effective against multidrug resistant strains of bacteria, fungi, protozoa, and virus, providing instructive lessons for the development of new and more efficient nanotechnological-based therapies for infectious diseases treatment. Therefore, novel drugs arising from the identification and analysis of bioactive peptides from South American anuran biodiversity have a promising future role on nanobiotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADR:

Adenoregulin

AFM:

Atomic force microscopy

AMP:

Antimicrobial peptide

CD:

Circular dichroism

DRP:

Dermaseptin related peptide

DRS:

Dermaseptin

DRT:

Dermatoxin

FSAP:

Frog skin active peptide

FTIR:

Fourier-transformed infrared spectroscopy

HIV-1:

Human immunodeficiency virus 1

HSV-1:

Herpes simplex virus 1

MALDI:

Matrix assisted laser desorption ionization

NMR:

Nuclear magnetic resonance

NPY:

Neuropeptide Y

PLS:

Phylloseptin

PLX:

Phylloxin

PM:

Plasmatic membrane

PTC:

Plasticin

PYY:

Polypeptide YY

SPYY:

Skin polypeptide YY

UniProt:

Universal protein resource

References

  • Abu-Raddad LJ, Patnaik P, Kublin JG (2006) Dual infection with HIV and malaria fuels the spread of both diseases in sub-Saharan Africa. Science 314:1603–1606

    Article  CAS  PubMed  Google Scholar 

  • Amiche M, Ducancel F, Lajeunesse E, Boulain JC, Menez A, Nicolas P (1993) Molecular cloning of a cDNA encoding the precursor of adenoregulin from frog skin. Relationships with the vertebrate defensive peptides, dermaseptins. Biochem Biophys Res Commun 191:983–990

    Article  CAS  PubMed  Google Scholar 

  • Amiche M, Ducancel F, Mor A, Boulain JC, Menez A, Nicolas P (1994) Precursors of vertebrate peptide antibiotics dermaseptin b and adenoreguhn have extensive sequence identities with precursors of opioid peptides dermorphin, dermenkephalin, and deltorphins. J Biol Chem 269:17847–17852

    CAS  PubMed  Google Scholar 

  • Amiche M, Delfour A, Nicolas P (1998) Opioid peptides from frog skin. EXS 85:57–71

    Google Scholar 

  • Amiche M, Seon AA, Pierre TN, Nicolas P (1999) The dermaseptin precursors: a protein family with a common preproregion and a variable C-terminal antimicrobial domain. FEBS Lett 456:352–356

    Article  CAS  PubMed  Google Scholar 

  • Amiche M, Seon AA, Wroblewski H, Nicolas P (2000) Isolation of dermatoxin from frog skin, an antibacterial peptide encoded by a novel member of the dermaseptin genes family. Eur J Biochem 267:4583–4592

    Article  CAS  PubMed  Google Scholar 

  • Amiche M, Ladram A, Nicolas P (2008) A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae. Peptides 29:2074–2082

    Article  CAS  PubMed  Google Scholar 

  • Ammar B, Perianin A, Mor A, Sarfat G, Tissot M, Nicolas P, Giroud JP, Roch-Arveiller M (1998) Dermaseptin, a peptide antibiotic, stimulates microbicidal activities of polymorphonuclear leukocytes. Biochem Biophys Res Commun 247:870–875

    Article  CAS  PubMed  Google Scholar 

  • Anastasi A, Falconieri Erspamer G (1970) Occurrence of phyllomedusin, a physalaemin-like decapeptide, in the skin of Phyllomedusa bicolor. Experientia 26:866–867

    Article  CAS  PubMed  Google Scholar 

  • Anastasi A, Bertaccini G, Erspamer V (1966) Pharmacological data on phyllokinin (bradykinyl-isoleucyl-tyrosine o-sulphate) and bradykinyl-isoleucyl-tyrosine. Br J Pharmacol 27:479–485

    CAS  Google Scholar 

  • Anastasi A, Bertaccini G, Cei JM, De Caro G, Erspamer V, Impicciatore M (1969) Structure and pharmacological actions of phyllocaerulein, a caerulein-like nonapeptide: its occurrence in extracts of the skin of Phyllomedusa sauvagei and related Phyllomedusa species. Br J Pharmacol 37:198–206

    CAS  PubMed  Google Scholar 

  • Andrä J, Monreal D, Martinez de Tejada G, Olak C, Brezesinski G, Sanchez Gomez S, Goldmann T, Bartels R, Brandenburg K, Moriyon I (2007) Rationale for the design of shortened derivatives of the NK-lysin-derived antimicrobial peptide NK-2 with improved activity against Gram-negative pathogens. J Biol Chem 282:14719–14728

    Article  PubMed  Google Scholar 

  • Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Biopolymers 47:415–433

    Article  CAS  PubMed  Google Scholar 

  • Barra D, Simmaco M (1995) Amphibian skin: a promising resource for antimicrobial peptides. Trends Biotechnol 13:205–209

    Article  CAS  PubMed  Google Scholar 

  • Barra D, Falconieri Erspamer G, Simmaco M, Bossa F, Melchiorri P, Erspamer V (1985) Rohdei-litorin: a new peptide from the skin of Plyllomedusa rohdei. FEBS Lett 182:53–56

    Article  CAS  PubMed  Google Scholar 

  • Barra D, Mignogna G, Simmaco M, Pucci P, Severini C, Falconieri Erspamer G, Negri L, Erspamer V (1994) [D-Leu2]deltorphin, a 17 amino acid opioid peptide from the skin of the Brazilian hylid frog, Phyllomedusa burmeisteri. Peptides 15:199–202

    Article  CAS  PubMed  Google Scholar 

  • Batista CVF, Rosendo da Silva L, Sebben A, Scaloni A, Ferrara L, Paiva GR, Olamendi-Portugal T, Possani LD, Bloch C Jr (1999) Antimicrobial peptides from the Brazilian frog Phyllomedusa distincta. Peptides 20:679–686

    Article  CAS  PubMed  Google Scholar 

  • Batista CVF, Scaloni A, Rigden DJ, Silva LR, Romero AR, Dukor R, Sebben A, Talamo F, Bloch C Jr (2001) A novel heterodimeric antimicrobial peptide from the tree-frog Phyllomedusa distincta. FEBS Lett 494:85–89

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (1999) The structure, dynamics and orientation of antimicrobial peptides in membranes by solid-state NMR spectroscopy. Biochim Biophys Acta 1462:157–183

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B (2004) Membrane-lytic peptides. Crit Rev Plant Sci 23:271–292

    Article  CAS  Google Scholar 

  • Bechinger B (2005) Detergent-like properties of magainin antibiotic peptides: a 31P solid-state NMR study. Biochim Biophys Acta 1712:101–108

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B, Lohner K (2006) Detergent-like action of linear cationic membrane-active antibiotic peptides. Biochim Biophys Acta 1758:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Bechinger B, Skladnev DA, Ogrel A, Li X, Rogozhkina EV, Ovchinnikova TV, O’Neil JD, Raap J (2001) 15N and 31P solid-state NMR investigations on the orientation of zervamicin II and alamethicin in phosphatidylcholine membranes. Biochemistry 40:9428–9437

    Article  CAS  PubMed  Google Scholar 

  • Belaid A, Aouni M, Khelifa R, Trabelsi A, Jemmali M, Hani K (2002) In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J Med Virol 66:229–234

    Article  CAS  PubMed  Google Scholar 

  • Béven L, Helluin O, Molle G, Duclohier H, Wróblewski H (1999) Correlation between anti-bacterial activity and pore sizes of two classes of voltage-dependent channel-forming peptides. Biochim Biophys Acta 1421:53–63

    Article  PubMed  Google Scholar 

  • Bevins CL, Zasloff M (1990) Peptides from frog skin. Annu Rev Biochem 59:395–414

    Article  CAS  PubMed  Google Scholar 

  • Bisht GS, Rawat DS, Kumar A, Kumar R, Pasha S (2007) Antimicrobial activity of rationally designed amino terminal modified peptides. Bioorg Med Chem Lett 17:4343–4346

    Article  CAS  PubMed  Google Scholar 

  • Blaylock LA, Ruibal R, Platt-Aloia K (1976) Skin structure and wiping behaviour of phyllomedusine frogs. Copeia 1976:283–295

    Article  Google Scholar 

  • Boman HGJ (2003) Effect of peptide length on the interaction between consensus peptides and DOPC/DOPA bilayers. Intern Med 254:197–215

    Article  CAS  Google Scholar 

  • Brand GD, Leite JRSA, Silva LP, Albuquerque S, Prates MV, Azevedo RB, Carregaro V, Silva JS, Sá VC, Brandao RA, Bloch C Jr (2002) Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta: anti-Trypanosoma cruzi activity without cytotoxicity to mammalian cells. J Biol Chem 277:49332–49340

    Article  CAS  PubMed  Google Scholar 

  • Brand GD, Krause FC, Silva LP, Leite JRSA, Melo JAT, Prates MV, Pesquero JB, Santos EL, Nakaie CR, Costa-Neto CM, Bloch C Jr (2006a) Bradykinin-related peptides from Phyllomedusa hypochondrialis. Peptides 27:2137–2146

    Article  CAS  PubMed  Google Scholar 

  • Brand GD, Leite JRSA, Mandel SMS, Mesquita DA, Silva LP, Prates MV, Barbosa EA, Vinecky F, Martins GR, Galasso JH, Kuckelhaus SAS, Sampaio RNR, Furtado JR, Andrade AC, Bloch C Jr (2006b) Novel dermaseptins from Phyllomedusa hypochondrialis (Amphibia). Biochem Biophys Res Commun 347:739–746

    Article  CAS  PubMed  Google Scholar 

  • Broccardo M, Erspamer V, Falconieri Erspamer G, Improta G, Linaii G, Melchiorri P, Montecucchi PC (1981) Pharmacological data on dermorphins. A new class of potent opioid peptides from amphibian skin. Br J Pharmacol 73:625–631

    CAS  PubMed  Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  PubMed  Google Scholar 

  • Bruston F, Lacombe C, Zimmermann K, Piesse C, Nicolas P, El Amri C (2007) Structural malleability of plasticins: preorganized conformations in solution and relevance for antimicrobial activity. Biopolymers 86:42–56

    Article  CAS  PubMed  Google Scholar 

  • Calderon LA, Silva-Jardim I, Zuliani JP, Silva AA, Ciancaglini P, Silva LHP, Stábeli RG (2009a) Amazonian biodiversity: a view of drug development for leishmaniasis and malaria. J Braz Chem Soc 20:1011–1023

    CAS  Google Scholar 

  • Calderon LA, Messias MR, Serrano ROP, Zaqueo KD, Souza ED, Nienow SS, Cardozo-Filho JL, Diniz-Sousa R, Delaix-Zaqueo K, Stabeli RG (2009b) Amphibia, Anura, Hylidae, Phyllomedusinae, Phyllomedusa azurea: distribution extension and geographic distribution map. Check List 5(2):317–319

    Google Scholar 

  • Caramaschi U (2006) Redefinição do grupo de Phyllomedusa hypochondrialis, com redescrição de P. megacephala (Miranda-Ribeiro, 1926), revalidação de P. azurea Cope, 1862 e descrição de uma nova espécie (Amphibia, Anura, Hylidae). Arq Mus Nac 64:159–179

    Google Scholar 

  • Castanho LM, De Luca IMS (2001) Moulting behavior in leaf-frogs of the genus Phyllomedusa (Anura: Hylidae). Zool Anz 240:3–6

    Article  Google Scholar 

  • Castiglione-Morelli MA, Cristinziano P, Pepe A, Temussi PA (2005) Conformation–activity relationship of a novel peptide antibiotic: structural characterization of dermaseptin DS 01 in media that mimic the membrane environment. Biopolymers 80:688–696

    Article  CAS  PubMed  Google Scholar 

  • Cerdá-Reverter JM, Larhammar D (2000) Neuropeptide Y family of peptides: structure, anatomical expression, function, and molecular evolution. Biochem Cell Biol 78:371–392

    Article  PubMed  Google Scholar 

  • Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta 1758:1184–1202

    Article  CAS  PubMed  Google Scholar 

  • Charpentier S, Amiche M, Mester J, Vouille V, Le Caer JP, Nicolas P, Delfour A (1998) Structure, synthesis, and molecular cloning of dermaseptins B, a family of skin peptide antibiotics. J Biol Chem 273:14690–14697

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Shaw C (2003) Cloning of the (Thr6)-phyllokinin precursor from Phyllomedusa sauvagei skin confirms a non-consensus tyrosine O-sulfation motif. Peptides 24:1123–1130

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Tang L, Shaw C (2003a) Identification of three novel Phyllomedusa sauvagei Dermaseptins (sVI-sVIII) by cloning from a skin secretion delivered cDNA library. Regul Pept 116:139–146

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Farragher S, Bjourson AJ, Orr DF, Rao P, Shaw C (2003b) Granular gland transcriptomes in stimulated amphibian skin secretions. Biochem J 371:125–130

    Article  CAS  PubMed  Google Scholar 

  • Chen T, Walker B, Zhou M, Shaw C (2005a) Dermatoxin and Phylloxin from the waxy monkey frog, Phyllomedusa sauvagei: cloning of precursor cDNAs and structural characterization from lyophilized skin secretion. Regul Pept 129:103–108

    Article  CAS  PubMed  Google Scholar 

  • Chen TB, Gagliardo R, Walker B, Zhou M, Shaw C (2005b) Partial structure of the phylloxin gene from the giant monkey frog Phyllomedusa bicolor: parallel cloning of precursor cDNA and genomic DNA from lyophilized skin secretion. Peptides 26:2624–2628

    Article  CAS  PubMed  Google Scholar 

  • Chen TB, Zhou M, Gagliardo R, Walker B, Shaw C (2006) Elements of the granular gland peptidome and transcriptome persist in air-dried skin of the South American orange-legged leaf frog, Phyllomedusa hypochondrialis. Peptides 27:2129–2136

    Article  CAS  PubMed  Google Scholar 

  • Coloma LA (2009) Anfibios de Ecuador 2005–2009. 2.0 Museo de Zoología, Pontificia Universidad Católica del Ecuador. Quito, Ecuador. http://www.puce.edu.ec/zoologia/vertebrados/amphibiawebec/anfibiosecuador/index.htm. Accessed 10 Jan 2010

  • Conceição K, Konno K, Richardson M, Antonazzi MM, Jared C, Daffre S, Camargo ACM, Pimenta DC (2006) Isolation and biochemical characterization of peptides presenting antimicrobial activity from the skin of Phyllomedusa hypochondrialis. Peptides 27:3092–3099

    Article  PubMed  CAS  Google Scholar 

  • Conceição K, Konno K, Melo RL, Antonazzi MM, Jared C, Sciani JM, Conceiçã IM, Prezoto BC, Camargo ACM, Pimenta DC (2007) Isolation and characterization of a novel bradykinin potentiating peptide (BPP) from the skin secretion. Peptides 28:515–523

    Article  PubMed  CAS  Google Scholar 

  • Conceição K, Bruni FM, Sciani JM, Konno K, Melo RL, Antoniazzi MM, Jared C, Lopes-Ferreira M, Pimenta DC (2009) Identification of bradykinin-related peptides from Phyllomedusa nordestina skin secretion using electrospray ionization tandem mass spectrometry after a single-step liquid chromatography. J Venom Anim Toxins Incl Trop Dis 15:633–652

    Article  CAS  Google Scholar 

  • Conlon JM, Chartrel N, Vaudry H (1992) Primary structure of frog PYY: implications for the molecular evolution of the pancreatic polypeptide family. Peptides 13:145–149

    Article  CAS  PubMed  Google Scholar 

  • Dagan A, Efron L, Gaidukov L, Mor A, Ginsburg H (2002) In vitro antiplasmodium effects of dermaseptins S4 derivatives. Antimicrob Agents Chemother 46:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Dalla SM, Cirioni O, Vitale RM, Renzone G, Coraiola M, Giacometti A, Potrich C, Baroni E, Guella G, Sanseverino M, De Luca S, Scalise G, Amodeo P, Scaloni A (2008) Structural features of distinctin affecting peptide biological and biochemical properties. Biochemistry 47:7888–7899

    Article  CAS  Google Scholar 

  • Daly JW, Caceres J, Moni RW, Gusovsky F, Moos M Jr, Seamon KB, Milton K, Myers CW (1992) Frog secretions and hunting magic in the upper Amazon: identification of a peptide that interacts with an adenosine receptor. Proc Natl Acad Sci USA 89:10960–10963

    Article  CAS  PubMed  Google Scholar 

  • Dathe M, Wieprecht T (1999) Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. Biochim Biophys Acta 1462:71–87

    Article  CAS  PubMed  Google Scholar 

  • Delfino G (1991) Ultrastructural aspects of venom secretion in anuran cutaneous glands. In: Tu AT, Dekker M (eds) Reptile venoms and toxins. Handbook of natural toxins. Marcel Dekker Inc., New York, pp 777–802

  • Delfino G, Brizzi R, Alvarez BB, Kracke-Berndorff R (1998) Serous cutaneous glands in Phyllomedusa hypochondrialis (Anura, Hylidae): secretory patterns during ontogenesis. Tissue Cell 30:30–40

    Article  CAS  PubMed  Google Scholar 

  • Edwards P (2007) Combinatorial approaches to combating multidrug resistance. Drug Discov Today 12:786–787

    Article  Google Scholar 

  • El Amri C, Lacombe C, Zimmerman K, Ladram A, Amiche M, Nicolas P, Bruston F (2006) The plasticins: membrane adsorption, lipid disorders, and biological activity. Biochemistry 45:14285–14297

    Article  CAS  PubMed  Google Scholar 

  • Erspamer V (1992) The opioid peptides of the amphibian skin. Int J Dev Neurosci 10:3–30

    Article  CAS  PubMed  Google Scholar 

  • Erspamer V, Bertaccini G, Cei JM (1962) Occurrence of an eledoisin-like polypeptide (physalaemin) in skin extracts of Physalaemus fuscumaculatus. Experientia 18:562–563

    Article  CAS  Google Scholar 

  • Erspamer V, Melchiorri P, Broccardo M, Erspamer GF, Falaschi P, Improota G, Negri L, Renda T (1981) The brain–gut–skin triangle: new peptides. Peptides 2:7–16

    Article  CAS  PubMed  Google Scholar 

  • Erspamer V, Melchiorri P, Falconieri Erspamer G, Montecucchi PC, De Castiglione R (1985) Phyllomedusa skin: a huge factory and store-house of a variety of active peptides. Peptides 6:7–12

    Article  CAS  PubMed  Google Scholar 

  • Erspamer V, Melchiorri P, Falconieri-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc Natl Acad Sci USA 86:5188–5192

    Article  CAS  PubMed  Google Scholar 

  • Faivovich J, Haddad CFB, Garcia PCA, Frost DR, Campbell JA, Wheller WC (2005) Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bull Am Mus Nat Hist 294:1–240

    Article  Google Scholar 

  • Feder R, Dagan A, Mor A (2000) Structure-activity relationship study of antimicrobial dermaseptin S4 showing the consequences of peptide oligomerisation on selective cytotoxicity. J Biol Chem 275:4230–4238

    Article  CAS  PubMed  Google Scholar 

  • Fleury Y, Dayem MA, Montagne JJ, Chaboisseau E, Le Caer JP, Nicolas P, Delfour A (1996) Covalent structure, synthesis, and structure-function studies of mesentericin Y105 (37), a defensive peptide from Gram-positive bacteria Leuconostoc mesenteroides. J Biol Chem 271:14421–14429

    Article  CAS  PubMed  Google Scholar 

  • Fleury Y, Vouille V, Beven L, Amiche M, Wroblewski H, Delfour A, Nicolas P (1998) Synthesis, antimicrobial activity and gene structure of a novel member of the dermaseptin B family. Biochim Biophys Acta 1396:228–236

    CAS  PubMed  Google Scholar 

  • Frost DR (2009) Amphibian species of the world: an online reference, Version 5.3. American Museum of Natural History, New York, USA. http://research.amnh.org/herpetology/amphibia/index.php. Accessed 2 Jan 2010

  • Gaidukov L, Fish A, Mor A (2003) Analysis of membrane-binding properties of dermaseptin analogues: relationships between binding and cytotoxicity. Biochemistry 42:12866–12874

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JK, Shaool D, Guillaud P, Ciceron L, Mazier D, Kustanovich I, Shai Y, Mor A (1997) Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J Biol Chem 272:31609–31616

    Article  CAS  PubMed  Google Scholar 

  • Giacometti A, Cirioni O, Ghiselli R, Orlando F, Silvestri C, Renzone G, Testa I, Mocchegiani F, Della Vittoria A, Saba V, Scaloni A, Scalise G (2006) Distinctin improves the efficacies of glycopeptides and betalactams against staphylococcal biofilm in an experimental model of central venous catheter infection. J Biomed Mater Res A 81:233–239

    Google Scholar 

  • Gomes A, Giri B, Saha A, Mishra R, Dasguta SC, Debnath A, Gomes A (2007) Bioactive molecules from amphibian skin: their biological activities with reference to therapeutic potential for possible drug development. Indian J Exp Biol 45:579–593

    CAS  PubMed  Google Scholar 

  • Gozzini L, Montecucchi PC, Erspamer V, Melchiorri P (1985) Tryptophillins from extracts of Phyllomedusa rohdei skin: new tetra-, penta- and hepta-peptides. Int J Pept Protein Res 25:323–329

    Article  CAS  Google Scholar 

  • Gregory SM, Cavenaugh A, Journigan V, Pokorny A, Almeida PFF (2008) A quantitative model for the all-or-none permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys J 94:1667–1680

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW (1997) Peptide antibiotics. Lancet 349:418–422

    Article  CAS  PubMed  Google Scholar 

  • Hancock REW, Lehrer R (1998) Cationic peptides: a new source of antibiotics. Trends Biotechnol 16:82–88

    Article  CAS  PubMed  Google Scholar 

  • Harzer U, Bechinger B (2000) The alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation. Biochemistry 39:13106–13114

    Article  CAS  PubMed  Google Scholar 

  • Haug BE, Stensena W, Svendsen JS (2007) Application of the Suzuki–Miyaura cross-coupling to increase antimicrobial potency generates promising novel antibacterials. Bioorg Med Chem Lett 17:2361–2364

    Article  CAS  PubMed  Google Scholar 

  • Hawrami A, Howe RA, Walsh TR, Dempsey CE (2008) Origin of low mammalian cell toxicity in a class of highly active antimicrobial amphipathic helical peptides. J Biol Chem 283:18636–18645

    Article  CAS  Google Scholar 

  • Hernandez C, Mor A, Dagger F, Nicolas P, Hernandez A, Benedetti EL, Dunia I (1992) Functional and structural damage in Leishmania mexicana exposed to the cationic peptide dermaseptin. Eur J Cell Biol 59:414–424

    CAS  PubMed  Google Scholar 

  • Hilpert K, Elliott MR, Volkmer-Engert R, Henklein P, Donini O, Zhou Q, Winkler DF, Hancock RE (2006) Sequence requirements and an optimization strategy for short antimicrobial peptides. Chem Biol 13:1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Huang HW, Chen FY, Lee MT (2004) Molecular mechanism of peptide-induced pores in membranes. Phys Rev Lett 92:198304–198307

    Article  PubMed  CAS  Google Scholar 

  • Huguenin F, Zucolotto V, Carvalho AJF, Gonzalez ER, Oliveira ON (2005) Layer-by-layer hybrid films incorporating WO3, TiO2 and chitosan. Chem Mater 17:6739–6745

    Article  CAS  Google Scholar 

  • Hwang PM, Vogel HJ (1998) Structure–function relationships of antimicrobial peptides. Biochem Cell Biol 76:235–246

    Article  CAS  PubMed  Google Scholar 

  • Jones AJS, Epand RM, Lin KF, Walton D, Vail WJ (1978) Size and shape of the model lipoprotein complex formed between glucagon and dimyristolglycerophosphocholine. Biochemistry 17:2301–2307

    Article  CAS  PubMed  Google Scholar 

  • Koczulla AR, Bals R (2003) Antimicrobial peptides—current status and therapeutic potential. Drugs 63:389–406

    Article  CAS  PubMed  Google Scholar 

  • Kohri K, Nata K, Yonekura H, Nagai A, Konno K, Okamoto H (1993) Cloning and structural determination of human peptide YY cDNA and gene. Biochim Biophys Acta 1173:345–349

    CAS  PubMed  Google Scholar 

  • Krugliak M, Feder R, Zolotarev VY, Gaidukov L, Dagan A, Ginsburg H, Mor A (2000) Antimalarial activities of dermaseptin S4 derivatives. Antimicrob Agents Chemother 44:2442–2451

    Article  CAS  PubMed  Google Scholar 

  • Kückelhaus SAS, Leite JRSA, Neves MP, Frota KS, Abdala LF, Muniz-Junqueira MI, Bloch C Jr, Tosta CE (2006) Toxicity evaluation to mice of phylloseptin-1, an antimicrobial peptide from the skin secretion of Phyllomedusa hypochondrialis (Amphibia). Int J Pept Res Ther 13:423–429

    Article  CAS  Google Scholar 

  • Kückelhaus SAS, Leite JRSA, Muniz-Junqueira MI, Sampaio RN, Bloch C Jr, Tosta CE (2009) Antiplasmodial and antileishmanial activities of phylloseptin-1, an antimicrobial peptide from the skin secretion of Phyllomedusa azurea (Amphibia). Exp Parasitol 123:11–16

    Article  PubMed  CAS  Google Scholar 

  • Kustanovich I, Shalev DE, Mikhlin M, Gaidukov L, Mor A (2002) Structural requirements for potent versus selective cytotoxicity for antimicrobial dermaseptin S4 derivatives. J Biol Chem 277:16941–16951

    Article  CAS  PubMed  Google Scholar 

  • Kwong PD, McDonald NQ, Singler PB, Hendrickson WA (1995) Structure of beta 2-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action. Structure 3:1109–1119

    Article  CAS  PubMed  Google Scholar 

  • Lacombe C, Cifuentes-Diasz C, Dunia I, Auber-Thomay M, Nicolas P, Amiche M (2000) Peptide secretion in the cutaneous gland of South American tree frog Phyllomedusa bicolor: an ultrastructural study. Eur J Cell Biol 79:631–641

    Article  CAS  PubMed  Google Scholar 

  • Lazarus LH, Attila M (1993) The toad, ugly and venomous, wears yet a precious jewel in his skin. Progr Neurobiol 41:473–507

    Article  CAS  Google Scholar 

  • Lazarus LH, Bryant SD, Cooper PS, Salvadori S (1999) What peptides these deltorphins be. Prog Neurobiol 57:377–420

    Article  CAS  PubMed  Google Scholar 

  • Leite JRSA, Silva LP, Rodrigues MI, Prates MV, Brand GD, Lacava BM, Azevedo RB, Bocca AL, Albuquerque S, Bloch C Jr (2005) Phylloseptins: a novel class of anti-bacterial and anti-protozoan peptides from the Phyllomedusa genus. Peptides 26:565–573

    Article  CAS  PubMed  Google Scholar 

  • Leite JRSA, Brand GD, Silva LP, Kückelhaus SAS, Bento WRC, Araújo ALT, Martins GR, Lazzari AM, Carlos Bloch Jr C (2008) Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta: secondary structure, antimicrobial activity, and mammalian cell toxicity. Comp Biochem Physiol A Mol Integr Physiol 151:336–343

  • Lequin O, Bruston F, Convert O, Chassaing G, Nicolas P (2003) Helical structure of dermaseptin B2 in a membrane-mimetic environment. Biochemistry 42:10311–10323

    Article  CAS  PubMed  Google Scholar 

  • Lequin O, Ladram A, Chabbert L, Bruston F, Convert O, Vanhoye D, Chassaing G, Nicolas P, Amiche M (2006) Dermaseptin S9, an α-helical antimicrobial peptide with a hydrophobic core and cationic termini. Biochemistry 45:468–480

    Article  CAS  PubMed  Google Scholar 

  • Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL (2006) Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis 6:589–601

    Article  CAS  PubMed  Google Scholar 

  • Lorin C, Saidi H, Belaid A, Zairi A, Baleux F, Hocini H (2005) The antimicrobial peptide dermaseptin S4 inhibits HIV-1 infectivity in vitro. Virology 334:264–275

    Article  CAS  PubMed  Google Scholar 

  • Mandel SMS (2008) Prospecção de peptídeos antimicrobianos da secreção cutânea de anfíbios do gênero Phyllomedusa. Dissertation. Universidade de Brasília

  • Marenah L, McClean S, Flatt PR, Orr DF, Shaw C, Abdel-Wahab YH (2004) Novel insulin-releasing peptides in the skin of Phyllomedusa trinitatis frog include 28 amino acid peptide from dermaseptin BIV precursor. Pancreas 29:110–115

    Article  CAS  PubMed  Google Scholar 

  • Marr AK, Gooderham WJ, Hancock REW (2006) Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol 6:468–472

    Article  CAS  PubMed  Google Scholar 

  • Matsuzaki K (1998) Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta 1376:391–400

    CAS  PubMed  Google Scholar 

  • Matsuzaki K (2009) Control of cell selectivity of antimicrobial peptides. Biochim Biophys Acta 1788:1687–1692

    Article  CAS  PubMed  Google Scholar 

  • Mignogna G, Severini C, Simmaco M, Negri L, Falconieri Erspamer G, Kreil G, Barra D (1992) Identification and characterization of two dermorphins from skin extracts of the Amazonian frog Phyllomedusa bicolor. FEBS Lett 302:151–154

    Article  CAS  PubMed  Google Scholar 

  • Moellering RC Jr (2003) New approaches to developing antimicrobials for resistant bacteria. J Infect Chemother 9:8–11

    Article  PubMed  Google Scholar 

  • Montecucchi PC, Henschen A, Erspamer V (1979) Structure of sauvagine, a vasoactive peptide from the skin of a frog. Hoppe-Seylers Z Physiol Chem 360:1178

    Google Scholar 

  • Montecucchi PC, Anastasi A, De Castiglione R, Erspamer V (1980) Isolation and amino acid composition of sauvagine, an active polypeptide from methanol extracts of the skin of the South American frog Phyllomedusa sauvagei. Int J Pept Protein Res 16:191–199

    Article  CAS  PubMed  Google Scholar 

  • Montecucchi PC, De Castiglione R, Piani S, Gozzini L, Erspamer V (1981a) Amino acid composition and sequence of dermorphin, a novel opiate-like peptide from the skin of Phyllomedusa sauvagei. Int J Pept Protein Res 17:275–283

    Article  CAS  PubMed  Google Scholar 

  • Montecucchi PC, De Castiglione R, Erspamer V (1981b) Identification of dermorphin and Hyp δ-dermorphin in skin extracts of the Brazilian frog Phyllomedusa rhodei. Int J Pept Protein Res 17:316–321

    Article  CAS  PubMed  Google Scholar 

  • Montecucchi PC, Gozzini L, Erspamer V (1986) Primary structure determination of a tryptophan-containing tridecapeptide from Phyllomedusa rohdei. Int J Pept Protein Res 27:175–182

    Article  CAS  Google Scholar 

  • Mor A, Nicolas P (1994a) Isolation and structure of novel defensive peptides from frog skin. Eur J Biochem 219:145–154

    Article  CAS  PubMed  Google Scholar 

  • Mor A, Nicolas P (1994b) The NH2-terminal α-helical domain 1–18 of dermaseptin is responsible for antimicrobial activity. J Biol Chem 269:1934–1939

    CAS  PubMed  Google Scholar 

  • Mor A, Delfour A, Nicolas P (1991a) Identification of a d-alanine-containing polypeptide precursor for the peptide opioid, dermorphin. J Biol Chem 266:6264–6270

    CAS  PubMed  Google Scholar 

  • Mor A, Nguyen VH, Delfour A, Migliore D, Nicolas P (1991b) Isolation, amino acid sequence, and synthesis of dermaseptin, a novel antimicrobial peptide of amphibian skin. Biochemistry 30:8824–8830

    Article  CAS  PubMed  Google Scholar 

  • Mor A, Amiche M, Nicolas P (1994a) Structure, synthesis, and activity of dermaseptin B. A novel vertebrate defensive peptide from frog skin: relationship with adenoregulin. Biochemistry 33:6642–6650

    Article  CAS  PubMed  Google Scholar 

  • Mor A, Chartrel N, Vaudry H, Nicolas P (1994b) Skin peptide tyrosine-tyrosine, a member of the pancreatic polypeptide family: Isolation, structure, synthesis, and endocrine activity. Proc Natl Acad Sci USA 91:10295–10299

    Article  CAS  PubMed  Google Scholar 

  • Mor A, Hani K, Nicolas P (1994c) The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. J Biol Chem 269:31635–31641

    CAS  PubMed  Google Scholar 

  • Mundim NCCR (2008) Prospecção de bradicininas de anfibios do gênero Phyllomedusa. Dissertation. Universidade de Brasília

  • Navon-Venezia S, Feder R, Gaidukov L, Carmeli Y, Mor A (2002) Antibacterial properties of dermaseptin S4 derivatives with in vivo activity. Antimicrob Agents Chemother 46:689–694

    Article  CAS  PubMed  Google Scholar 

  • Nicolas P, El Amri C (2009) The dermaseptin superfamily: A gene-based combinatorial library of antimicrobial peptides. Biochim Biophys Acta 1788:1537–1550

    Article  CAS  PubMed  Google Scholar 

  • Nicolas P, Vanhoye D, Amiche M (2003) Molecular strategies in biological evolution of antimicrobial peptides. Peptides 24:1669–1680

    Article  CAS  PubMed  Google Scholar 

  • Papo N, Shai Y (2003) Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? Peptides 24:1693–1703

    Article  CAS  PubMed  Google Scholar 

  • Perron GG, Zasloff M, Bell G (2006) Experimental evolution of resistance to an antimicrobial peptide. Proc Roy Soc Lond B 273:251–256

    Article  CAS  Google Scholar 

  • Peschel A, Sahl HG (2006) The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536

    Article  CAS  PubMed  Google Scholar 

  • Pierre TP, Seon AA, Amiche M, Nicolas P (2000) Phylloxin, a novel peptide antibiotic of the dermaseptin family of antimicrobial/opioid peptide precursors. Eur J Biochem 267:370–378

    Article  CAS  PubMed  Google Scholar 

  • Poulter L, Terry AS, Williams DH, Giovannini MG, Moore CH, Gibson BW (1988) Levitide, a new hormone-like peptide from the skin of Xenopus laevis. Peptide and peptide precursor cDNA sequence. J Biol Chem 263:3279–3283

    CAS  PubMed  Google Scholar 

  • Pouny Y, Rapaport D, Mor A, Nicolas P, Shai Y (1992) Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry 31:12416–12423

    Article  CAS  PubMed  Google Scholar 

  • Pukkila-Worley R, Mylonakis E (2008) Epidemiology and management of cryptococcal meningitis: developments and challenges. Expert Opin Pharmacother 9:551–560

    Article  CAS  PubMed  Google Scholar 

  • Resende JM, Moraes CM, Prates MV, Cesar A, Almeida FCL, Mundim NCCR, Valente AP, Bemquerer MP, Piló-Veloso DA, Bechinger B (2008) Solution NMR structures of the antimicrobial peptides phylloseptin-1, -2, and -3 and biological activity: the role of charges and hydrogen bonding interactions in stabilizing helix conformations. Peptides 29:1633–1644

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Egger R, Kreil G (1987) d-Alanine in the frog skin peptide dermorphin is derived from l-alanine in the precursor. Science 238:200–202

    Article  CAS  PubMed  Google Scholar 

  • Richter K, Egger R, Negri L, Corsi R, Severini C, Kreil G (1990) cDNAs encoding [D-Ala2]deltorphin precursors from skin of Phyllomedusa bicolor also contain genetic information for three dermorphin-related opioid peptides. Proc Natl Acad Sci USA 87:4836–4839

    Article  CAS  PubMed  Google Scholar 

  • Rivas L, Luque-Ortega JR, Andreu D (2009) Amphibian antimicrobial peptides and protozoa: lessons from parasites. Biochim Biophys Acta 1788:1570–1581

    Article  CAS  PubMed  Google Scholar 

  • Rotem S, Mor A (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta 1788:1582–1592

    Article  CAS  PubMed  Google Scholar 

  • Rydlo T, Sotem S, Mor A (2006) Antibacterial properties of dermaseptin S4 derivatives under extreme incubation conditions. Antimicrob Agents Chemother 50:490–507

    Article  CAS  PubMed  Google Scholar 

  • SBH (2009) Lista de espécies de anfíbios do Brasil. Sociedade Brasileira de Herpetologia (SBH).http://www.sbherpetologia.org.br/checklist/anfibios.htm. Accessed 12 Jan 2010

  • Sengupta D, Leontiadou H, Mark AE, Marrink SJ (2008) Toroidal pores formed by antimicrobial peptides show significant disorder. Biochim Biophys Acta 1778:2308–2317

    Article  CAS  PubMed  Google Scholar 

  • Seon AA, Pierre TN, Redeker V, Lacombe C, Delfour A, Nicolas P, Amiche M (2000) Isolation, structure, synthesis, and activity of a new member of the calcitonin gene-related peptide family from frog skin and molecular cloning of its precursor. J Biol Chem 275:5934–5940

    Article  CAS  PubMed  Google Scholar 

  • Serra MD, Cirioni O, Vitale RM, Renzone G, Coraiola M, Giacometti A, Potrich C, Baroni E, Guella G, Sanseverino M, De Luca S, Scalise G, Amodeo P, Scaloni A (2008) Structural features of distinctin affecting peptide biological and biochemical properties. Biochemistry 47:7888–7899

    Google Scholar 

  • Shai Y (1995) Molecular recognition between membrane-spanning polypeptides. Trends Biochem Sci 20:460–464

    Article  CAS  PubMed  Google Scholar 

  • Shai Y (2002) Mode of action of membrane active antimicrobial peptides. Biopolymers 66:236–248

    Article  CAS  PubMed  Google Scholar 

  • Shalev DE, Mor A, Kustanovich I (2002) Structural consequences of carboxyamidation of dermaseptin S3. Biochemistry 41:7312–7317

    Article  CAS  PubMed  Google Scholar 

  • Shaw C (2009) Advancing drug discovery with reptile and amphibian venom peptides, venom-based medicines. Biochem Soc 31:34–37

    Google Scholar 

  • Shin Y, Moni RW, Lueders JE, Daly JW (1994) Effects of the amphiphilic peptides mastoparan and adenoregulin on receptor binding, G proteins, phosphoinositide breakdown, cyclic AMP generation, and calcium influx. Cell Mol Neurobiol 14:133–157

    Article  CAS  PubMed  Google Scholar 

  • Shukla A, Fleming KE, Chuang HF, Chau TM, Loose CR, Stephanopoulos GN, Hammond PT (2009) Controlling the release of peptide antimicrobial agents from surfaces. Biomaterials 31(8):2348–2357

    Article  PubMed  CAS  Google Scholar 

  • Silva LR, Batista CVF, Prates MV, Gordo M, Bloch C Jr (2000) A new antimicrobial peptide homologous to the dermaseptins isolated from Phyllomedusa tarsius. Toxicon 38:554–555

    Article  Google Scholar 

  • Silva LP, Leite JR, Brand GD, Regis WB, Tedesco AC, Azevedo RB, Freitas SM, Bloch C Jr (2008) Dermaseptins from Phyllomedusa oreades and Phyllomedusa distincta: liposomes fusion and/or lysis investigated by fluorescence and atomic force microscopy. Comp Biochem Physiol A Mol Integr Physiol 151:329–335

    Article  PubMed  CAS  Google Scholar 

  • Siqueira JR Jr, Gasparotto LHS, Crespilho FN, Carvalho AJF, Zucolotto V, Oliveira ON Jr (2006) Physicochemical properties and sensing ability of metallophthalocyanines/chitosan nanocomposites. J Phys Chem B 110:22690–22694

    Article  CAS  PubMed  Google Scholar 

  • Strahilevitz J, Mor A, Nicolas P, Shai Y (1994) Spectrum of antimicrobial activity and assembly of dermaseptin B and its precursor form in phospholipid membranes. Biochemistry 33:10951–10960

    Article  CAS  PubMed  Google Scholar 

  • Thompson AH (2006) A genomic/proteomic approach to isolating and identifying bioactive peptides from the skin secretions of Phyllomedusa hypochondrialis azurea. Thesis. University of Ulster Coleraine

  • Thompson AH, Bjourson AJ, Shaw C, McClean S (2006) Bradykinin-related peptides from Phyllomedusa hypochondrialis azurea: Mass spectrometric structural characterisation and cloning of precursor cDNAs. Rapid Commun Mass Spectr 20:3780–3788

    Article  CAS  Google Scholar 

  • Thompson AH, Bjourson AJ, Orr DF, Shaw C, Mcclean S (2007a) A combined mass spectrometric and cDNA sequencing approach to the isolation and characterization of novel antimicrobial peptides from the skin secretions of Phyllomedusa hypochondrialis azurea. Peptides 28:1331–1343

    Article  CAS  PubMed  Google Scholar 

  • Thompson AH, Bjourson AJ, Orr DF, Shaw C, McClean S (2007b) Amphibian skin secretomics: application of parallel quadrupole time- of-flight mass spectrometry and peptide precursor cDNA cloning to rapidly characterize the skin secretory peptidome of Phyllomedusa hypochondrialis azurea: discovery of a novel peptide family, the hyposins. J Proteome Res 6:3604–3613

    Article  CAS  PubMed  Google Scholar 

  • Toledo RC, Jared C (1993) Cutaneous adaptations to water balance in amphibians. Comp Biochem Physiol 105:593–608

    Article  Google Scholar 

  • Toledo RC, Jared C (1995) Cutaneous granular glands and amphibian venoms. Comp Biochem Physiol 111:1–29

    Article  Google Scholar 

  • UniProt (2009) The UniProt Consortium. The Universal Protein Resource (UniProt). Nucl Acids Res 37:D169–D174

    Article  CAS  Google Scholar 

  • Vaara M (2009) New approaches in peptide antibiotics. Curr Opin Pharmacol 9(5):571–576

    Article  CAS  PubMed  Google Scholar 

  • van’t HW, Veerman EC, Helmerhorst EJ, Amerongen AV (2001) Antimicrobial peptides: properties and applicability. Biol Chem 382:597–619

    Article  Google Scholar 

  • Vanhoye D, Bruston F, Nicolas P, Amiche M (2003) Antimicrobial peptides from hylid and ranin frogs originated from a 150-million-year-old ancestral precursor with a conserved signal peptide but a hypermutable antimicrobial domain. Eur J Biochem 270:2068–2081

    Article  CAS  PubMed  Google Scholar 

  • Vanhoye D, Bruston F, El Amri S, Ladram A, Amiche M, Nicolas P (2004) Membrane Association, electrostatic sequestration, and cytotoxicity of gly-leu-rich peptide orthologs with differing functions. Biochemistry 43:8391–8409

    Article  CAS  PubMed  Google Scholar 

  • Verly RM, Rodrigues MA, Daghastanli KR, Denadai AM, Cuccovia IM, Bloch C Jr, Frézard F, Santoro MM, Piló-Veloso D, Bemquerer MP (2008) Effect of cholesterol on the interaction of the amphibian antimicrobial peptide DD K with liposomes. Peptides 29:15–24

    Article  CAS  PubMed  Google Scholar 

  • Verly RM, Moraes CM, Resende JM, Aisenbrey C, Bemquerer MP, Piló-Veloso D, Valente AP, Almeida FCL, Bechinge B (2009) Structure and membrane interactions of the antibiotic peptide dermadistinctin K by multidimensional solution and oriented 15N and 31P solid-state NMR spectroscopy. Biophys J 96:2194–2203

    Article  CAS  PubMed  Google Scholar 

  • Vouille V, Amiche M, Nicolas P (1997) Structure of genes for dermaseptins B, antimicrobial peptides from frog skin. FEBS Lett 414:27–31

    Article  CAS  PubMed  Google Scholar 

  • Vouldoukis I, Shai Y, Nicolas P, Mor A (1996) Broad spectrum antibiotic activity of the skin-PYY. FEBS Lett 380:237–240

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Zhou M, Zhou Z, Chen T, Walker B, Shaw C (2009) Sauvatide—a novel amidated myotropic decapeptide from the skin secretion of the waxy monkey frog, Phyllomedusa sauvagei. Bioch Biophy Res Commun 383:240–244

    Article  CAS  Google Scholar 

  • Wang H, Xu K, Liu L, Tan JPK, Chen Y, Li Y, Fan W, Wei Z, Sheng J, Yang YY, Li L (2010) The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials 31(10):2874–2881

    Article  CAS  PubMed  Google Scholar 

  • Wieprecht T, Dathe M, Krause E, Beyermann M, Maloy WL, MacDonald DL, Bienert M (1997) Modulation of membrane activity of amphipathic, antibacterial peptides by slight modifications of the hydrophobic moment. FEBS Lett 417:135–140

    Article  CAS  PubMed  Google Scholar 

  • Yasuhara T, Nakajima T, Falconieri Erspamer G, Erspamer V (1981) New tachykinins Glu2, Pro5-kassinin (Hylambates-kassinin) and hylambatin in the skin of the African rhacophorid frog Hylambates maculates. Biomed Res 2:613–617

    CAS  Google Scholar 

  • Yasuhara T, Nakajima T, Nokihara K, Yanaihara C, Yanaihara N, Erspamer V, Falconieri Erspamer G (1983) Two new, frog skin peptides, phyllolitorins, of the bombesin-ranatensin family. Biomed Res 4:407–412

    CAS  Google Scholar 

  • Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    Article  CAS  PubMed  Google Scholar 

  • Zairi A, Tangy F, Saadi S, Hani K (2008) In vitro activity of dermaseptin S4 derivatives against genital infections pathogens. Regul Toxicol Pharmacol 50:353–358

    Article  CAS  PubMed  Google Scholar 

  • Zairi A, Tangy F, Bouassida K, Hani K (2009) Dermaseptins and magainins: antimicrobial peptides from frogs’ skin—new sources for a promising spermicides microbicides. J Biomed Biotechnol 2009:1–8

    Article  CAS  Google Scholar 

  • Zampa MF, de Brito AC, Kitagawa IL, Constantino CJ, Oliveira ON Jr, da Cunha HN, Zucolotto V, dos Santos JR Jr, Eiras C (2007) Natural gum-assisted phthalocyanine immobilization in electroactive nanocomposites: physicochemical characterization and sensing applications. Biomacromolecules 8:3408–3413

    Article  CAS  PubMed  Google Scholar 

  • Zampa MF, Araújo IMS, Costa V, Costa CHN, Santos JR Jr, Zucolotto V, Eiras C, Leite JRSA (2009) Leishmanicidal Activity and Immobilization of dermaseptin 01 antimicrobial peptides in ultrathin films for nanomedicine applications. Nanomedicine 5:352–358

    CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Parente J, Harris SM, Woods DE, Hancock REW, Falla TJ (2005) Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob Agents Chemother 49:2921–2927

    Article  CAS  PubMed  Google Scholar 

  • Zucolotto V, Pinto AP, Tumolo T, Moraes ML, Baptista MS, Riul A Jr, Araújo AP, Oliveira ON Jr (2006) Catechol biosensing using a nanostructured layer-by-layer film containing Cl-catechol 1, 2 dioxygenase. Biosens Bioelectron 21:1320–1326

    Article  CAS  PubMed  Google Scholar 

  • Zucolotto V, Daghastanli KRP, Hayasaka CO, Riul A Jr, Ciancaglini P, Oliveira ON Jr (2007) Using capacitance measurements as the detection method in antigen-containing layer-by-layer films for biosensing. Anal Chem 79:2163–2167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Ministry of Science and Technology (MCT), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de Tecnologia do Acre (FUNTAC/FDCT), Coordenação de Aperfeiçoamento de Nível Superior (CAPES) – Projeto NanoBiotec, Secretary of Development of the Rondonia State (PRONEX/CNPq) for financial support and Priscila Cerviglieri for linguistic advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Guerino Stábeli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azevedo Calderon, L., Silva, A.A.E., Ciancaglini, P. et al. Antimicrobial peptides from Phyllomedusa frogs: from biomolecular diversity to potential nanotechnologic medical applications. Amino Acids 40, 29–49 (2011). https://doi.org/10.1007/s00726-010-0622-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0622-3

Keywords

Navigation