Skip to main content
Log in

Reduction of protein radicals by GSH and ascorbate: potential biological significance

  • Invited Review
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The oxidation of proteins and other macromolecules by radical species under conditions of oxidative stress can be modulated by antioxidant compounds. Decreased levels of the antioxidants glutathione and ascorbate have been documented in oxidative stress-related diseases. A radical generated on the surface of a protein can: (1) be immediately and fully repaired by direct reaction with an antioxidant; (2) react with dioxygen to form the corresponding peroxyl radical; or (3) undergo intramolecular long range electron transfer to relocate the free electron to another amino acid residue. In pulse radiolysis studies, in vitro production of the initial radical on a protein is conveniently made at a tryptophan residue, and electron transfer often leads ultimately to residence of the unpaired electron on a tyrosine residue. We review here the kinetics data for reactions of the antioxidants glutathione, selenocysteine, and ascorbate with tryptophanyl and tyrosyl radicals as free amino acids in model compounds and proteins. Glutathione repairs a tryptophanyl radical in lysozyme with a rate constant of (1.05 ± 0.05) × 105 M–1 s–1, while ascorbate repairs tryptophanyl and tyrosyl radicals ca. 3 orders of magnitude faster. The in vitro reaction of glutathione with these radicals is too slow to prevent formation of peroxyl radicals, which become reduced by glutathione to hydroperoxides; the resulting glutathione thiyl radical is capable of further radical generation by hydrogen abstraction. Although physiologically not significant, selenoglutathione reduces tyrosyl radicals as fast as ascorbate. The reaction of protein radicals formed on insulin, β-lactoglobulin, pepsin, chymotrypsin and bovine serum albumin with ascorbate is relatively rapid, competes with the reaction with dioxygen, and the relatively innocuous ascorbyl radical is formed. On the basis of these kinetics data, we suggest that reductive repair of protein radicals may contribute to the well-documented depletion of ascorbate in living organisms subjected to oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bensasson RV, Land EJ, Truscott TG (1983) Flash photolysis and pulse radiolysis. Pergamon, Oxford

    Google Scholar 

  • Bisby RH, Parker AW (1995) Reaction of ascorbate with the α-tocopheroxyl radical in micellar and bilayer membrane systems. Arch Biochem Biophys 317:170–178

    Article  CAS  PubMed  Google Scholar 

  • Bobrowski K, Wierzchowski KL, Holcman J, Ciurak M (1990) Intramolecular electron transfer in model peptides containing methionine, tryptophan and tyrosine: a pulse radiolysis study. Int J Radiat Biol 57:919–932

    Google Scholar 

  • Bobrowski K, Wierzchowski KL, Holcman J, Ciurak M (1992) Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. IV. Met/S-Br → tyr/O radical transformation in aqueous solution of H-Tyr-(Pro)n-Met-OH peptides. Int J Radiat Biol 62:507–516

    Article  CAS  PubMed  Google Scholar 

  • Bobrowski K, Holcman J, Poznanski J, Wierzchowski KL (1997) Pulse radiolysis studies of intramolecular electron transfer in model peptides and proteins. 7. Trp → TyrO radical transformation in hen egg-white lysozyme. Effects of pH, temperature, Trp62 oxidation and inhibitor binding. Biophys Chem 63:153–166

    Article  CAS  PubMed  Google Scholar 

  • Bonini MG, Radi R, Ferrer-Sueta G, Ferreira AMD, Augusto O (1999) Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide. J Biol Chem 274:10802–10806

    Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants. Lipid peroxidation, α-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  CAS  PubMed  Google Scholar 

  • Buffington GD, Doe WF (1995) Altered ascorbic acid status in the mucosa from inflammatory bowel disease patients. Free Radic Res 22:131–143

    Article  Google Scholar 

  • Burton GW, Wronska U, Stone L, Foster DO, Ingold KU (1990) Biokinetics of dietary RRR-α-tocopherol in the male guinea pig at three dietary levels of vitamin C and two levels of vitamin E. Evidence that vitamin C does not “spare” vitamin E in vivo. Lipids 25:199–210

    Article  CAS  PubMed  Google Scholar 

  • Butler J, Land EJ, Prütz WA, Swallow AJ (1982) Charge transfer between tryptophan and tyrosine in proteins. Biochim Biophys Acta 705:150–162

    CAS  Google Scholar 

  • Butler J, Land EJ, Swallow AJ, Prütz WA (1984) The azide radical and its reaction with tryptophan and tyrosine. Radiat Phys Chem 23:265–270

    CAS  Google Scholar 

  • Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons. Hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    CAS  Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    CAS  PubMed  Google Scholar 

  • Davies MJ, Dean RT (1997) Radical-mediated protein oxidation: from chemistry to medicine. Oxford University Press, New York

    Google Scholar 

  • Domazou AS, Koppenol WH, Gebicki JM (2009) Efficient repair of protein radicals by ascorbate. Free Radic Biol Med 46:1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Drechsel DA, Patel M (2008) Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med 44:1873–1886

    Article  CAS  PubMed  Google Scholar 

  • Flohé L, Günzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Lett 32:132–134

    Article  PubMed  Google Scholar 

  • Foy CJ, Passmore AP, Vahidassr MD, Young IS, Lawson JT (1999) Plasma chain-breaking antioxidants in Alzheimer’s disease, vascular dementia and Parkinson’s disease. Q J Med 92:39–45

    CAS  Google Scholar 

  • Garrison WM (1987) Reaction mechanisms in the radiolysis of peptides, polypeptides, and proteins. Chem Rev 87:381–398

    Article  CAS  Google Scholar 

  • Gebicki JM (1997) Protein hydroperoxides as new reactive oxygen species. Redox Rep 3:99–110

    CAS  Google Scholar 

  • Gmeiner BMK, Seelos CCC (1996) Tyrosine phosphorylation blocks tyrosine free radical formation and, hence, the hormonogenic iodination reaction. Free Radic Biol Med 21:349–351

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, Oxford

    Google Scholar 

  • Hoey BM, Butler J (1984) The repair of oxidized amino acids by antioxidants. Biochim Biophys Acta 791:212–218

    CAS  PubMed  Google Scholar 

  • Ihle JN (2001) The Stat family in cytokine signaling. Curr Opin Cell Biol 13:211–217

    Article  CAS  PubMed  Google Scholar 

  • Jovanovic SV, Simic MG (1985) Repair of tryptophanyl radicals by antioxidants. J Free Radic Biol Med 1:125–129

    Article  CAS  PubMed  Google Scholar 

  • Kume-Kick J, Rice ME (1998) Estrogen-dependent modulation of rat brain ascorbate levels and ischemia-induced ascorbate loss. Brain Res 803:105–113

    Article  CAS  PubMed  Google Scholar 

  • Land EJ, Prütz WA (1979) Reaction of azide radicals with amino acids and proteins. Int J Radiat Biol 36:75–83

    Article  CAS  Google Scholar 

  • Liu R-M, Pavia KAG (2010) Oxidative stress and glutathione in TGF-β-mediated fibrogenesis. Free Radic Biol Med 48:1–15

    Article  PubMed  Google Scholar 

  • Locatelli F, Canaud B, Eckardt K-U, Stenvinkel P, Wanner C, Zoccali C (2003) Oxidative stress in end-stage renal disease: an emerging threat to patient outcome. Nephrol Dial Transplant 18:1272–1280

    Article  CAS  PubMed  Google Scholar 

  • Lymar SV, Hurst JK (1995) Rapid reaction between peroxonitrite ion and carbon dioxide: implications for biological activity. J Am Chem Soc 117:8867–8868

    Article  CAS  Google Scholar 

  • Madej E, Wardman P (2007) The oxidizing power of the glutathione thiyl radical as measured by its electrode potential at physiological pH. Arch Biochem Biophys 462:94–102

    Article  CAS  PubMed  Google Scholar 

  • Meli R, Nauser T, Koppenol WH (1999) Direct observation of intermediates in the reaction of peroxynitrite with carbon dioxide. Helv Chim Acta 82:722–725

    Article  CAS  Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of Se-gluathione peroxidase, catalase and Cu/Zn-SOD for cell survival against oxidative stress. Free Radic Biol Med 17:235–248

    Article  CAS  PubMed  Google Scholar 

  • Misso NLA, Brooks-Wildhaber J, Ray S, Vally H, Thompson PJ (2005) Plasma concentrations of dietary and nondietary antioxidants are low in severe asthma. Eur Respir J 26:257–264

    Article  CAS  PubMed  Google Scholar 

  • Monteiro HP, Stern A (1996) Redox modulation of tyrosine phosphorylation-dependent signal transduction pathways. Free Radic Biol Med 21:323–333

    Article  CAS  PubMed  Google Scholar 

  • Moor E, Shohami E, Kanevsky E, Grigoriadis N, Symeonidou C, Kohen R (2006) Impairment of the ability of the injured aged brain in elevating urate and ascorbate. Exp Gerontol 41:303–311

    Article  CAS  PubMed  Google Scholar 

  • Nauser T, Schöneich C (2003) Thiyl radicals abstract hydrogen atoms from the αC-H bonds in model peptides: absolute rate constants and effect of amino acid structure. J Am Chem Soc 125:2042–2043

    Article  CAS  PubMed  Google Scholar 

  • Nauser T, Koppenol WH, Gebicki JM (2005) The mechanism and kinetics of the oxidation of GSH by protein free radicals. Biochem J 392:693–701

    Article  CAS  PubMed  Google Scholar 

  • Neta P, Huie RE, Ross AB (1990) Rate constants for reactions of peroxyl radicals in fluid solutions. J Phys Chem Ref Data 19:413–513

    Article  CAS  Google Scholar 

  • Nunez J (1984) Thyroid hormones: mechanism of phenoxy ether formation. Methods Enzymol 107:476–488

    Article  CAS  PubMed  Google Scholar 

  • Pietzsch J (ed) (2006) Protein oxidation and disease. In: Protein oxidation and disease. Research Signpost, Trivandrum, pp 1–6

  • Prütz WA, Butler J, Land EJ, Swallow AJ (1980) Direct demonstration of electron transfer between tryptophan and tyrosine in proteins. Biochem Biophys Res Commun 96:408–414

    Article  PubMed  Google Scholar 

  • Prütz WA, Siebert F, Butler J, Land EJ, Menez A, Montenay-Garestier T (1982) Intramolecular radical transformations involving methionine, tryptophan and tyrosine. Biochim Biophys Acta 705:139–149

    Google Scholar 

  • Pryor WA (1986) Cancer and free radicals. In: Shankel DM, Hollaender A, Hartman PE, Kada T (eds) Antimutagenesis and anticarcinogenesis mechanisms. Basic Books, New York, pp 45–59

  • Requena JR, Levine RL, Stadtman ER (2003) Recent advances in the analysis of oxidized proteins. Amino Acids 25:221–226

    Article  CAS  PubMed  Google Scholar 

  • Rubbo H, Radi R, Anselmi D, Kirk M, Barnes S, Butler J, Eiserich JP, Freeman BA (2000) Nitric oxide reaction with lipid peroxyl radicals spares α-tocopherol during lipid peroxidation—greater oxidant protection from the pair nitric oxide/α-tocopherol than α-tocopherol/ascorbate. J Biol Chem 275:10812–10818

    Google Scholar 

  • Rush JD, Koppenol WH (1990) Reactions of Fe(II)-ATP and Fe(II)-citrate complexes with t-butyl hydroperoxide and cumylhydroperoxide. FEBS Lett 275:114–116

    Article  CAS  PubMed  Google Scholar 

  • Santus R, Patterson LK, Hug GL, Bazin M, Mazière JC, Morlière P (2000) Interactions of superoxide anion with enzyme radicals: kinetics of reaction with lysozyme tryptophan radicals and corresponding effects on tyrosine electron transfer. Free Radic Res 33:383–391

    Article  CAS  PubMed  Google Scholar 

  • Simpson JA, Narita S, Gieseg S, Gebicki S, Gebicki JM, Dean RT (1992) Long-lived reactive species on free-radical-damaged proteins. Biochem J 282:621–624

    CAS  PubMed  Google Scholar 

  • Steinmann D, Nauser T, Beld J, Tanner M, Günther D, Bounds PL, Koppenol WH (2008) Kinetics of tyrosyl radical reduction by selenocysteine. Biochemistry 47:9602–9607

    Article  CAS  PubMed  Google Scholar 

  • Stubbe J, van der Donk WA (1998) Protein radicals in enzyme catalysis. Chem Rev 98:705–762

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen JW, Raap A, Koppenol WH, Nauta H (1978) A tunneling model to explain the reduction of ferricytochrome c by H and OH radicals. Biochim Biophys Acta 503:1–9

    Article  PubMed  Google Scholar 

  • von Sonntag C (1987) The chemical basis of radiation biology. Taylor & Francis, London

    Google Scholar 

  • Williams MH, Yandell JK (1982) Outer-sphere electron transfer reactions of ascorbate anions. Aust J Chem 35:1133–1144

    Article  CAS  Google Scholar 

  • Winterbourn CC (2008) Reconciling the chemistry and biology of reactive oxygen species. Nat Chem Biol 4:278–286

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Eidgenossische Technische Hochschule, Zürich, Switzerland, the Swiss Nationalfonds, Bern, Switzerland, and Macquarie University, Sydney, Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Janusz M. Gebicki or Willem H. Koppenol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gebicki, J.M., Nauser, T., Domazou, A. et al. Reduction of protein radicals by GSH and ascorbate: potential biological significance. Amino Acids 39, 1131–1137 (2010). https://doi.org/10.1007/s00726-010-0610-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0610-7

Keywords

Navigation