Skip to main content
Log in

Protein oxidation: role in signalling and detection by mass spectrometry

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Proteins can undergo a wide variety of oxidative post-translational modifications (oxPTM); while reversible modifications are thought to be relevant in physiological processes, non-reversible oxPTM may contribute to pathological situations and disease. The oxidant is also important in determining the type of oxPTM, such as oxidation, chlorination or nitration. The best characterized oxPTMs involved in signalling modulation are partial oxidations of cysteine to disulfide, glutathionylated or sulfenic acid forms that can be reversed by thiol reductants. Proline hydroxylation in HIF signalling is also quite well characterized, and there is increasing evidence that specific oxidations of methionine and tyrosine may have some biological roles. For some proteins regulated by cysteine oxidation, the residues and molecular mechanism involved have been extensively studied and are well understood, such as the protein tyrosine phosphatase PTP1B and MAP3 kinase ASK1, as well as transcription factor complex Keap1–Nrf2. The advances in understanding of the role oxPTMs in signalling have been facilitated by advances in analytical technology, in particular tandem mass spectrometry techniques. Combinations of peptide sequencing by collisionally induced dissociation and precursor ion scanning or neutral loss to select for specific oxPTMs have proved very useful for identifying oxidatively modified proteins and mapping the sites of oxidation. The development of specific labelling and enrichment procedures for S-nitrosylation or disulfide formation has proved invaluable, and there is ongoing work to establish analogous methods for detection of nitrotyrosine and other modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

cICAT:

Cleavable isotope coded affinity tag

CID:

Collision induced dissociation

Duox:

Dual oxidases

ECD:

Electron capture dissociation

eNOS:

Endothelial nitric oxide synthases

ESI:

Electrospray ionization

FIH:

Factor inhibiting HIF

HIF:

Hypoxia inducible factor

iNOS:

Inducible nitric oxide synthases

iTRAQ:

Isobaric tag for relative and absolute quantification

MALDI:

Matrix assisted laser desorption/ionization

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

Nox:

NADPH oxidase

oxPTM:

oxidative post-translational modifications

Phox:

Phagocyte oxidase

PHD:

Proline hydroxylation domain

PTP:

Protein tyrosine phosphatase

SNO:

S-nitrosothiol

Trx:

Thioredoxin

References

  • Abello N, Kerstjens HA, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8:3222–3238

    Article  PubMed  CAS  Google Scholar 

  • Agbas A, Moskovitz J (2009) The role of methionine oxidation/reduction in the regulation of immune response. Curr Signal Transduct Ther 4:46–50

    Article  PubMed  CAS  Google Scholar 

  • Amoresano A, Chiappetta G, Pucci P, D’Ischia M, Marino G (2007) Bidimensional tandem mass spectrometry for selective identification of nitration sites in proteins. Anal Chem 79:2109–2117

    Article  PubMed  CAS  Google Scholar 

  • Balafanova Z, Bolli R, Zhang J, Zheng Y, Pass JM, Bhatnagar A, Tang XL, Wang O, Cardwell E, Ping P (2002) Nitric oxide (NO) induces nitration of protein kinase Cepsilon (PKCepsilon), facilitating PKCepsilon translocation via enhanced PKCepsilon -RACK2 interactions: a novel mechanism of no-triggered activation of PKCepsilon. J Biol Chem 277:15021–15027

    Article  PubMed  CAS  Google Scholar 

  • Barrett DM, Black SM, Todor H, Schmidt-Ullrich RK, Dawson KS, Mikkelsen RB (2005) Inhibition of protein-tyrosine phosphatases by mild oxidative stresses is dependent on S-nitrosylation. J Biol Chem 280:14453–14461

    Article  PubMed  CAS  Google Scholar 

  • Bartlett RK, Bieber Urbauer RJ, Anbanandam A, Smallwood HS, Urbauer JL, Squier TC (2003) Oxidation of Met144 and Met145 in calmodulin blocks calmodulin dependent activation of the plasma membrane Ca-ATPase. Biochemistry 42:3231–3238

    Article  PubMed  CAS  Google Scholar 

  • Bergt C, Fu X, Huq NP, Kao J, Heinecke JW (2004) Lysine residues direct the chlorination of tyrosines in YXXK motifs of apolipoprotein A-I when hypochlorous acid oxidizes high density lipoprotein. J Biol Chem 279:7856–7866

    Article  PubMed  CAS  Google Scholar 

  • Bigelow DJ, Squier TC (2005) Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochim Biophys Acta 1703:121–134

    PubMed  CAS  Google Scholar 

  • Biteau B, Labarre J, Toledano MB (2003) ATP-dependent reduction of cysteine–sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425:980–984

    Article  PubMed  CAS  Google Scholar 

  • Brennan JP, Wait R, Begum S, Bell JR, Dunn MJ, Eaton P (2004) Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J Biol Chem 279:41352–41360

    Article  PubMed  CAS  Google Scholar 

  • Brown DI, Griendling KK (2009) Nox proteins in signal transduction. Free Radic Biol Med 47:1239–1253

    Article  PubMed  CAS  Google Scholar 

  • Bruschi M, Grilli S, Candiano G, Fabbroni S, Della Ciana L, Petretto A, Santucci L, Urbani A, Gusmano R, Scolari F, Ghiggeri GM (2009) New iodo-acetamido cyanines for labeling cysteine thiol residues. A strategy for evaluating plasma proteins and their oxido-redox status. Proteomics 9:460–469

    Article  PubMed  CAS  Google Scholar 

  • Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, Radi R (2000) Cytochrome c nitration by peroxynitrite. J Biol Chem 275:21409–21415

    Article  PubMed  CAS  Google Scholar 

  • Charles RL, Schroder E, May G, Free P, Gaffney PR, Wait R, Begum S, Heads RJ, Eaton P (2007) Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol Cell Proteomics 6:1473–1484

    Article  PubMed  CAS  Google Scholar 

  • Chen YY, Huang YF, Khoo KH, Meng TC (2007) Mass spectrometry-based analyses for identifying and characterizing S-nitrosylation of protein tyrosine phosphatases. Methods 42:243–249

    Article  PubMed  CAS  Google Scholar 

  • Chen YY, Chu HM, Pan KT, Teng CH, Wang DL, Wang AH, Khoo KH, Meng TC (2008) Cysteine S-nitrosylation protects protein-tyrosine phosphatase 1B against oxidation-induced permanent inactivation. J Biol Chem 283:35265–35272

    Article  PubMed  CAS  Google Scholar 

  • Chiappetta G, Corbo C, Palmese A, Galli F, Piroddi M, Marino G, Amoresano A (2009) Quantitative identification of protein nitration sites. Proteomics 9:1524–1537

    Article  PubMed  CAS  Google Scholar 

  • Cho SH, Lee CH, Ahn Y, Kim H, Kim H, Ahn CY, Yang KS, Lee SR (2004) Redox regulation of PTEN and protein tyrosine phosphatases in H2O2-mediated cell signaling. FEBS Lett 560:7–13

    Article  PubMed  CAS  Google Scholar 

  • Choi J, Sullards MC, Olzmann JA, Rees HD, Weintraub ST, Bostwick DE, Gearing M, Levey AI, Chin LS, Li L (2006) Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem 281:10816–10824

    Article  PubMed  CAS  Google Scholar 

  • Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML, Coles CH, Yu XH, Hay RT, Ley SC, Pugh CW, Oldham NJ, Masson N, Schofield CJ, Ratcliffe PJ (2006) Posttranslational hydroxylation of ankyrin repeats in I kappa B proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci USA 103:14767–14772

    Article  PubMed  CAS  Google Scholar 

  • Cockman ME, Webb JD, Kramer HB, Kessler BM, Ratcliffe PJ (2009) Proteomics-based identification of novel factor inhibiting hypoxia-inducible factor (FIH) substrates indicates widespread asparaginyl hydroxylation of ankyrin repeat domain-containing proteins. Mol Cell Proteomics 8:535–546

    Article  PubMed  CAS  Google Scholar 

  • Cumming RC, Andon NL, Haynes PA, Park M, Fischer WH, Schubert D (2004) Protein disulfide bond formation in the cytoplasm during oxidative stress. J Biol Chem 279:21749–21758

    Article  PubMed  CAS  Google Scholar 

  • Dall’Agnol M, Bernstein C, Bernstein H, Garewal H, Payne CM (2006) Identification of S-nitrosylated proteins after chronic exposure of colon epithelial cells to deoxycholate. Proteomics 6:1654–1662

    Article  PubMed  CAS  Google Scholar 

  • Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109

    PubMed  CAS  Google Scholar 

  • Davies KJ, Delsignore ME, Lin SW (1987) Protein damage and degradation by oxygen radicals. II. Modification of amino acids. J Biol Chem 262:9902–9907

    PubMed  CAS  Google Scholar 

  • Denu JM, Tanner KG (1998) Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation. Biochemistry 37:5633–5642

    Article  PubMed  CAS  Google Scholar 

  • Dinkova-Kostova AT, Holtzclaw WD, Cole RN, Itoh K, Wakabayashi N, Katoh Y, Yamamoto M, Talalay P (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99:11908–11913

    Article  PubMed  CAS  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  CAS  Google Scholar 

  • Emes MJ (2009) Oxidation of methionine residues: the missing link between stress and signalling responses in plants. Biochem J 422:e1–e2

    Article  PubMed  CAS  Google Scholar 

  • Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474

    Article  PubMed  CAS  Google Scholar 

  • Erwin PA, Mitchell DA, Sartoretto J, Marletta MA, Michel T (2006) Subcellular targeting and differential S-nitrosylation of endothelial nitric-oxide synthase. J Biol Chem 281:151–157

    Article  PubMed  CAS  Google Scholar 

  • Finley EL, Dillon J, Crouch RK, Schey KL (1998) Identification of tryptophan oxidation products in bovine alpha-crystallin. Protein Sci 7:2391–2397

    Article  PubMed  CAS  Google Scholar 

  • Forman HJ, Torres M (2002) Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 166:S4–S8

    Article  PubMed  Google Scholar 

  • Forman HJ, Fukuto JM, Torres M (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287:C246–C256

    Article  PubMed  CAS  Google Scholar 

  • Forrester MT, Thompson JW, Foster MW, Nogueira L, Moseley MA, Stamler JS (2009) Proteomic analysis of S-nitrosylation and denitrosylation by resin-assisted capture. Nat Biotechnol 27:557–559

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Kassim SY, Parks WC, Heinecke JW (2001) Hypochlorous acid oxygenates the cysteine switch domain of pro-matrilysin (MMP-7). A mechanism for matrix metalloproteinase activation and atherosclerotic plaque rupture by myeloperoxidase. J Biol Chem 276:41279–41287

    Article  PubMed  CAS  Google Scholar 

  • Fu C, Hu J, Liu T, Ago T, Sadoshima J, Li H (2008) Quantitative analysis of redox-sensitive proteome with DIGE and ICAT. J Proteome Res 7:3789–3802

    Article  PubMed  CAS  Google Scholar 

  • Galeva NA, Esch SW, Williams TD, Markille LM, Squier TC (2005) Rapid method for quantifying the extent of methionine oxidation in intact calmodulin. J Am Soc Mass Spectrom 16:1470–1480

    Article  PubMed  CAS  Google Scholar 

  • Gao J, Yin DH, Yao Y, Sun H, Qin Z, Schoneich C, Williams TD, Squier TC (1998) Loss of conformational stability in calmodulin upon methionine oxidation. Biophys J 74:1115–1134

    Article  PubMed  CAS  Google Scholar 

  • Gaston B, Singel D, Doctor A, Stamler JS (2006) S-nitrosothiol signaling in respiratory biology. Am J Respir Crit Care Med 173:1186–1193

    Article  PubMed  CAS  Google Scholar 

  • Ghesquiere B, Goethals M, Van Damme J, Staes A, Timmerman E, Vandekerckhove J, Gevaert K (2006) Improved tandem mass spectrometric characterization of 3-nitrotyrosine sites in peptides. Rapid Commun Mass Spectrom 20:2885–2893

    Article  PubMed  CAS  Google Scholar 

  • Goldman R, Stoyanovsky DA, Day BW, Kagan VE (1995) Reduction of phenoxyl radicals by thioredoxin results in selective oxidation of its SH-groups to disulfides. An antioxidant function of thioredoxin. Biochemistry 34:4765–4772

    Article  PubMed  CAS  Google Scholar 

  • Greco TM, Hodara R, Parastatidis I, Heijnen HF, Dennehy MK, Liebler DC, Ischiropoulos H (2006) Identification of S-nitrosylation motifs by site-specific mapping of the S-nitrosocysteine proteome in human vascular smooth muscle cells. Proc Natl Acad Sci USA 103:7420–7425

    Article  PubMed  CAS  Google Scholar 

  • Gu Z, Kaul M, Yan B, Kridel SJ, Cui J, Strongin A, Smith JW, Liddington RC, Lipton SA (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  PubMed  CAS  Google Scholar 

  • Guan ZQ, Yates NA, Bakhtiar R (2003) Detection and characterization of methionine oxidation in peptides by collision-induced dissociation and electron capture dissociation. J Am Soc Mass Spectrom 14:605–613

    Article  PubMed  CAS  Google Scholar 

  • Guo W, Adachi T, Matsui R, Xu S, Jiang B, Zou MH, Kirber M, Lieberthal W, Cohen RA (2003) Quantitative assessment of tyrosine nitration of manganese superoxide dismutase in angiotensin II-infused rat kidney. Am J Physiol Heart Circ Physiol 285:H1396–H1403

    PubMed  CAS  Google Scholar 

  • Hagglund P, Bunkenborg J, Maeda K, Svensson B (2008) Identification of thioredoxin disulfide targets using a quantitative proteomics approach based on isotope-coded affinity tags. J Proteome Res 7:5270–5276

    Article  PubMed  CAS  Google Scholar 

  • Hampton MB, Baty JW, Winterbourn CC (2006) Use of a proteomic technique to identify oxidant-sensitive thiol proteins in cultured cells. In: Dalle-Donne I, Scaloni A, Butterfield DA (eds) Redox proteomics, pp 253–265

  • Hansen KC, Schmitt-Ulms G, Chalkley RJ, Hirsch J, Baldwin MA, Burlingame AL (2003) Mass spectrometric analysis of protein mixtures at low levels using cleavable C-13-isotope-coded affinity tag and multidimensional chromatography. Mol Cell Proteomics 2:299–314

    PubMed  CAS  Google Scholar 

  • Hao G, Derakhshan B, Shi L, Campagne F, Gross SS (2006) SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures. Proc Natl Acad Sci USA 103:1012–1017

    Article  PubMed  CAS  Google Scholar 

  • Hardin SC, Larue CT, Oh MH, Jain V, Huber SC (2009) Coupling oxidative signals to protein phosphorylation via methionine oxidation in Arabidopsis. Biochem J 422:305–312

    Article  PubMed  CAS  Google Scholar 

  • Hawkins CL, Morgan PE, Davies MJ (2009) Quantification of protein modification by oxidants. Free Radic Biol Med 46:965–988

    Article  PubMed  CAS  Google Scholar 

  • Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  PubMed  CAS  Google Scholar 

  • Hewitson KS, Schofield CJ, Ratcliffe PJ (2007) Hypoxia-inducible factor prolyl-hydroxylase: purification and assays of PHD2. Meth Enzymol 435:25–42

    Google Scholar 

  • Hoffman MD, Walsh GM, Rogalski JC, Kast J (2009) Identification of nitroxyl-induced modifications in human platelet proteins using a novel mass spectrometric detection method. Mol Cell Proteomics 8:887–903

    Article  PubMed  CAS  Google Scholar 

  • Holland R, Hawkins AE, Eggler AL, Mesecar AD, Fabris D, Fishbein JC (2008) Prospective type 1 and type 2 disulfides of Keap1 protein. Chem Res Toxicol 21:2051–2060

    Article  PubMed  CAS  Google Scholar 

  • Hoshi T, Heinemann S (2001) Regulation of cell function by methionine oxidation and reduction. J Physiol 531:1–11

    Article  PubMed  CAS  Google Scholar 

  • Ignarro LJ (1990) Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 30:535–560

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001: PL1

  • Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    Article  PubMed  CAS  Google Scholar 

  • Jakob U, Muse W, Eser M, Bardwell JC (1999) Chaperone activity with a redox switch. Cell 96:341–352

    Article  PubMed  CAS  Google Scholar 

  • Jakob U, Eser M, Bardwell JC (2000) Redox switch of hsp33 has a novel zinc-binding motif. J Biol Chem 275:38302–38310

    Article  PubMed  CAS  Google Scholar 

  • Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T, Stamler JS, Rhee SG, van der Vliet A (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45:1–17

    Article  PubMed  CAS  Google Scholar 

  • Jiang XY, Smith JB, Abraham EC (1996) Identification of a MS–MS fragment diagnostic for methionine sulfoxide. J Mass Spectrom 31:1309–1310

    Article  CAS  Google Scholar 

  • Johnson H, Gaskell SJ (2006) Proteomics gets faster and smarter. Genome Biol 7:331

    Article  PubMed  Google Scholar 

  • Jonsson TJ, Tsang AW, Lowther WT, Furdui CM (2008) Identification of intact protein thiosulfinate intermediate in the reduction of cysteine sulfinic acid in peroxiredoxin by human sulfiredoxin. J Biol Chem 283:22890–22894

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30:393–402

    Article  PubMed  CAS  Google Scholar 

  • Khor HK, Fisher MT, Schoneich C (2004) Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO-). J Biol Chem 279:19486–19493

    Article  PubMed  CAS  Google Scholar 

  • Kozarova A, Sliskovic I, Mutus B, Simon ES, Andrews PC, Vacratsis PO (2007) Identification of redox sensitive thiols of protein disulfide isomerase using isotope coded affinity technology and mass spectrometry. J Am Soc Mass Spectrom 18:260–269

    Article  PubMed  CAS  Google Scholar 

  • Lambeth JD (2002) Nox/Duox family of nicotinamide adenine dinucleotide (phosphate) oxidases. Curr Opin Hematol 9:11–17

    Article  PubMed  Google Scholar 

  • Landar A, Oh JY, Giles NM, Isom A, Kirk M, Barnes S, Darley-Usmar VM (2006) A sensitive method for the quantitative measurement of protein thiol modification in response to oxidative stress. Free Radic Biol Med 40:459–468

    Article  PubMed  CAS  Google Scholar 

  • Lander HM, Hajjar DP, Hempstead BL, Mirza UA, Chait BT, Campbell S, Quilliam LA (1997) A molecular redox switch on p21(ras)—structural basis for the nitric oxide-p21(ras) interaction. J Biol Chem 272:4323–4326

    Article  PubMed  CAS  Google Scholar 

  • Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML (2002) Asparagine hydroxylation of the HIF transactivation domain: A hypoxic switch. Science 295:858–861

    Article  PubMed  CAS  Google Scholar 

  • Lee SR, Kwon KS, Kim SR, Rhee SG (1998) Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J Biol Chem 273:15366–15372

    Article  PubMed  CAS  Google Scholar 

  • Lee JR, Lee SJ, Kim TW, Kim JK, Park HS, Kim DE, Kim KP, Yeo WS (2009) Chemical approach for specific enrichment and mass analysis of nitrated peptides. Anal Chem

  • Lei K, Townsend DM, Tew KD (2008) Protein cysteine sulfinic acid reductase (sulfiredoxin) as a regulator of cell proliferation and drug response. Oncogene 27:4877–4887

    Article  PubMed  CAS  Google Scholar 

  • Leichert LI, Jakob U (2004) Protein thiol modifications visualized in vivo. PLoS Biol 2:e333

    Article  PubMed  CAS  Google Scholar 

  • Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U (2008) Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci USA 105:8197–8202

    Article  PubMed  CAS  Google Scholar 

  • Leonard SE, Reddie KG, Carroll KS (2009) Mining the thiol proteome for sulfenic acid modifications reveals new targets for oxidation in cells. ACS Chem Biol 4:783–799

    Article  PubMed  CAS  Google Scholar 

  • Li S, Whorton AR (2003) Regulation of protein tyrosine phosphatase 1B in intact cells by S-nitrosothiols. Arch Biochem Biophys 410:269–279

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS (2001) A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490–494

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Sanchez LM, Muntane J, de la Mata M, Rodriguez-Ariza A (2009) Unraveling the S-nitrosoproteome: tools and strategies. Proteomics 9:808–818

    Article  PubMed  CAS  Google Scholar 

  • Lou YW, Chen YY, Hsu SF, Chen RK, Lee CL, Khoo KH, Tonks NK, Meng TC (2008) Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. Febs J 275:69–88

    Article  PubMed  CAS  Google Scholar 

  • Lu XM, Lu M, Tompkins RG, Fischman AJ (2005) Site-specific detection of S-nitrosylated PKB alpha/Akt1 from rat soleus muscle using CapLC-Q-TOF(micro) mass spectrometry. J Mass Spectrom 40:1140–1148

    Article  PubMed  CAS  Google Scholar 

  • Mahon PC, Hirota K, Semenza GL (2001) FIH-1: a novel protein that interacts with HIF-1 alpha and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev 15:2675–2686

    Article  PubMed  CAS  Google Scholar 

  • Mannick JB, Schonhoff C, Papeta N, Ghafourifar P, Szibor M, Fang K, Gaston B (2001) S-Nitrosylation of mitochondrial caspases. J Cell Biol 154:1111–1116

    Article  PubMed  CAS  Google Scholar 

  • Matsukawa J, Matsuzawa A, Takeda K, Ichijo H (2004) The ASK1-MAP kinase cascades in mammalian stress response. J Biochem 136:261–265

    Article  PubMed  CAS  Google Scholar 

  • Matthews JR, Botting CH, Panico M, Morris HR, Hay RT (1996) Inhibition of NF-kappaB DNA binding by nitric oxide. Nucleic Acids Res 24:2236–2242

    Article  PubMed  CAS  Google Scholar 

  • Michalek RD, Nelson KJ, Holbrook BC, Yi JS, Stridiron D, Daniel LW, Fetrow JS, King SB, Poole LB, Grayson JM (2007) The requirement of reversible cysteine sulfenic acid formation for T cell activation and function. J Immunol 179:6456–6467

    PubMed  CAS  Google Scholar 

  • Midwinter RG, Cheah FC, Moskovitz J, Vissers MC, Winterbourn CC (2006) IkappaB is a sensitive target for oxidation by cell-permeable chloramines: inhibition of NF-kappa B activity by glycine chloramine through methionine oxidation. Biochem J 396:71–78

    Article  PubMed  CAS  Google Scholar 

  • Miersch S, Mutus B (2005) Protein S-nitrosation: biochemistry and characterization of protein thiol–NO interactions as cellular signals. Clin Biochem 38:777–791

    Article  PubMed  CAS  Google Scholar 

  • Mohri M, Reinach PS, Kanayama A, Shimizu M, Moskovitz J, Hisatsune T, Miyamoto Y (2002) Suppression of the TNFalpha-induced increase in IL-1alpha expression by hypochlorite in human corneal epithelial cells. Invest Ophthalmol Vis Sci 43:3190–3195

    PubMed  Google Scholar 

  • Mouls L, Silajdzic E, Haroune N, Spickett CM, Pitt AR (2009) Development of novel mass spectrometric methods for identifying HOCl-induced modifications to proteins. Proteomics 9:1617–1631

    Article  PubMed  CAS  Google Scholar 

  • Nadeau PJ, Charette SJ, Toledano MB, Landry J (2007) Disulfide Bond-mediated multimerization of Ask1 and its reduction by thioredoxin-1 regulate H(2)O(2)-induced c-Jun NH(2)-terminal kinase activation and apoptosis. Mol Biol Cell 18:3903–3913

    Article  PubMed  CAS  Google Scholar 

  • Ogino T, Hosako M, Hiramatsu K, Omori M, Ozaki M, Okada S (2005) Oxidative modification of IkappaB by monochloramine inhibits tumor necrosis factor alpha-induced NF-kappaB activation. Biochim Biophys Acta 1746:135–142

    Article  PubMed  CAS  Google Scholar 

  • Ogusucu R, Rettori D, Munhoz DC, Netto LE, Augusto O (2007) Reactions of yeast thioredoxin peroxidases I and II with hydrogen peroxide and peroxynitrite: rate constants by competitive kinetics. Free Radic Biol Med 42:326–334

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Akuta T, Tamura F, van Der Vliet A, Akaike T (2004) Molecular mechanism for activation and regulation of matrix metalloproteinases during bacterial infections and respiratory inflammation. Biol Chem 385:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Park HS, Yu JW, Cho JH, Kim MS, Huh SH, Ryoo K, Choi EJ (2004) Inhibition of apoptosis signal-regulating kinase 1 by nitric oxide through a thiol redox mechanism. J Biol Chem 279:7584–7590

    Article  PubMed  CAS  Google Scholar 

  • Parsonage D, Karplus PA, Poole LB (2008) Substrate specificity and redox potential of AhpC, a bacterial peroxiredoxin. Proc Natl Acad Sci USA 105:8209–8214

    Article  PubMed  CAS  Google Scholar 

  • Pesavento JJ, Garcia BA, Streeky JA, Kelleher NL, Mizzen CA (2007) Mild performic acid oxidation enhances chromatographic and top down mass spectrometric analyses of histones. Mol Cell Proteomics 6:1510–1526

    Article  PubMed  CAS  Google Scholar 

  • Peskin AV, Winterbourn CC (2001) Kinetics of the reactions of hypochlorous acid and amino acid chloramines with thiols, methionine, and ascorbate. Free Radic Biol Med 30:572–579

    Article  PubMed  CAS  Google Scholar 

  • Peskin AV, Low FM, Paton LN, Maghzal GJ, Hampton MB, Winterbourn CC (2007) The high reactivity of peroxiredoxin 2 with H(2)O(2) is not reflected in its reaction with other oxidants and thiol reagents. J Biol Chem 282:11885–11892

    Article  PubMed  CAS  Google Scholar 

  • Peters GH, Frimurer TM, Olsen OH (1998) Electrostatic evaluation of the signature motif (H/V)CX5R(S/T) in protein-tyrosine phosphatases. Biochemistry 37:5383–5393

    Article  PubMed  CAS  Google Scholar 

  • Petersson AS, Steen H, Kalume DE, Caidahl K, Roepstorff P (2001) Investigation of tyrosine nitration in proteins by mass spectrometry. J Mass Spectrom 36:616–625

    Article  PubMed  CAS  Google Scholar 

  • Poole LB, Nelson KJ (2008) Discovering mechanisms of signaling-mediated cysteine oxidation. Curr Opin Chem Biol 12:18–24

    Article  PubMed  CAS  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci USA 101:4003–4008

    Article  PubMed  CAS  Google Scholar 

  • Radi R, Bush KM, Cosgrove TP, Freeman BA (1991) Reaction of xanthine oxidase-derived oxidants with lipid and protein of human plasma. Arch Biochem Biophys 286:117–125

    Article  PubMed  CAS  Google Scholar 

  • Reddie KG, Seo YH, Muse Iii WB, Leonard SE, Carroll KS (2008) A chemical approach for detecting sulfenic acid-modified proteins in living cells. Mol Biosyst 4:521–531

    Article  PubMed  CAS  Google Scholar 

  • Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA (2005) Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol 17:183–189

    Article  PubMed  CAS  Google Scholar 

  • Riederer BM (2009) Oxidation proteomics: the role of thiol modifications. Curr Proteomics 6:51–62

    Article  CAS  Google Scholar 

  • Riederer IM, Herrero RM, Leuba G, Riederer BM (2008) Serial protein labeling with infrared maleimide dyes to identify cysteine modifications. J Proteomics 71:222–230

    Article  PubMed  CAS  Google Scholar 

  • Rubbo H, Radi R (2008) Protein and lipid nitration: role in redox signaling and injury. Biochim Biophys Acta 1780:1318–1324

    Article  PubMed  CAS  Google Scholar 

  • Salmeen A, Barford D (2005) Functions and mechanisms of redox regulation of cysteine-based phosphatases. Antioxid Redox Signal 7:560–577

    Article  PubMed  CAS  Google Scholar 

  • Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Phys Biochem 11:173–186

    Google Scholar 

  • Schofield CJ, Ratcliffe PJ (2004) Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol 5:343–354

    Article  PubMed  CAS  Google Scholar 

  • Sekhar KR, Rachakonda G, Freeman ML (2009) Cysteine-based regulation of the CUL3 adaptor protein Keap1. Toxicol Appl Pharmacol

  • Seo YH, Carroll KS (2009) Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies. Proc Natl Acad Sci USA 106:16163–16168

    Article  PubMed  CAS  Google Scholar 

  • Sethuraman M, Clavreul N, Huang H, McComb ME, Costello CE, Cohen RA (2007) Quantification of oxidative posttranslational modifications of cysteine thiols of p21ras associated with redox modulation of activity using isotope-coded affinity tags and mass spectrometry. Free Radic Biol Med 42:823–829

    Article  PubMed  CAS  Google Scholar 

  • Shetty V, Neubert TA (2009) Characterization of novel oxidation products of cysteine in an active site motif peptide of PTP1B. J Am Soc Mass Spectrom 20:1540–1548

    Article  PubMed  CAS  Google Scholar 

  • Shetty V, Spellman DS, Neubert TA (2007) Characterization by tandem mass spectrometry of stable cysteine sulfenic acid in a cysteine switch peptide of matrix metalloproteinases. J Am Soc Mass Spectrom 18:1544–1551

    Article  PubMed  CAS  Google Scholar 

  • Sohn J, Rudolph J (2003) Catalytic and chemical competence of regulation of Cdc25 phosphatase by oxidation/reduction. Biochemistry 42:10060–10070

    Article  PubMed  CAS  Google Scholar 

  • Song H, Bao S, Ramanadham S, Turk J (2006) Effects of biological oxidants on the catalytic activity and structure of group VIA phospholipase A2. Biochemistry 45:6392–6406

    Article  PubMed  CAS  Google Scholar 

  • Spickett CM, Pitt AR, Morrice N, Kolch W (2006) Proteomic analysis of phosphorylation, oxidation and nitrosylation in signal transduction. Biochim Biophys Acta 1764:1823–1841

    PubMed  CAS  Google Scholar 

  • Stadtman ER, Moskovitz J, Levine RL (2003) Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 5:577–582

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Simon DI, Osborne JA, Mullins ME, Jaraki O, Michel T, Singel DJ, Loscalzo J (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89:444–448

    Article  PubMed  CAS  Google Scholar 

  • Steen H, Mann M (2002) Analysis of bromotryptophan and hydroxyproline modifications by high-resolution, high-accuracy precursor ion scanning utilizing fragment ions with mass-deficient mass tags. Anal Chem 74:6230–6236

    Article  PubMed  CAS  Google Scholar 

  • Stuchbury T, Shipton M, Norris R, Malthouse JP, Brocklehurst K, Herbert JA, Suschitzky H (1975) A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1, 3-diazole moiety. Biochem J 151:417–432

    PubMed  CAS  Google Scholar 

  • Summerfield SG, Cox KA, Gaskell SJ (1997) The promotion of d-type ions during the low energy collision-induced dissociation of some cysteic acid-containing peptides. J Am Soc Mass Spectrom 8:25–31

    Article  CAS  Google Scholar 

  • Turell L, Botti H, Carballal S, Radi R, Alvarez B (2009) Sulfenic acid—a key intermediate in albumin thiol oxidation. J Chromatogr B Analyt Technol Biomed Life Sci 877:3384–3392

    Article  PubMed  CAS  Google Scholar 

  • van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H (2003) Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423:773–777

    Article  PubMed  CAS  Google Scholar 

  • Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and reversal. Free Radic Biol Med 18:93–105

    Article  PubMed  CAS  Google Scholar 

  • Wagner E, Luche S, Penna L, Chevallet M, Van Dorsselaer A, Leize-Wagner E, Rabilloud T (2002) A method for detection of overoxidation of cysteines: peroxiredoxins are oxidized in vivo at the active-site cysteine during oxidative stress. Biochem J 366:777–785

    PubMed  CAS  Google Scholar 

  • Wang Y, Vivekananda S, Men L, Zhang Q (2004) Fragmentation of protonated ions of peptides containing cysteine, cysteine sulfinic acid, and cysteine sulfonic acid. J Am Soc Mass Spectrom 15:697–702

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Liu T, Wu C, Li H (2008) A strategy for direct identification of protein S-nitrosylation sites by quadrupole time-of-flight mass spectrometry. J Am Soc Mass Spectrom 19:1353–1360

    Article  PubMed  CAS  Google Scholar 

  • Willett WS, Copley SD (1996) Identification and localization of a stable sulfenic acid in peroxide-treated tetrachlorohydroquinone dehalogenase using electrospray mass spectrometry. Chem Biol 3:851–857

    Article  PubMed  CAS  Google Scholar 

  • Winterbourn CC, Hampton MB (2008) Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45:549–561

    Article  PubMed  CAS  Google Scholar 

  • Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, Rhee SG (2003) Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300:653–656

    Article  PubMed  CAS  Google Scholar 

  • Xu G, Chance MR (2005) Radiolytic modification of sulfur-containing amino acid residues in model peptides: fundamental studies for protein footprinting. Anal Chem 77:2437–2449

    Article  PubMed  CAS  Google Scholar 

  • Yao Y, Yin D, Jas GS, Kuczer K, Williams TD, Schoneich C, Squier TC (1996) Oxidative modification of a carboxyl-terminal vicinal methionine in calmodulin by hydrogen peroxide inhibits calmodulin-dependent activation of the plasma membrane Ca-ATPase. Biochemistry 35:2767–2787

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne M. Spickett.

Additional information

Review invited for a special issue of Amino Acids dedicated to Amino acid and protein modification by oxygen and nitrogen species.

This article is part of the Special Issue on Redoxomics of proteins and amino acids.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spickett, C.M., Pitt, A.R. Protein oxidation: role in signalling and detection by mass spectrometry. Amino Acids 42, 5–21 (2012). https://doi.org/10.1007/s00726-010-0585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0585-4

Keywords

Navigation