Skip to main content
Log in

Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Previous studies on the chemopreventive mechanisms of dietary selenium have focused on its incorporation into antioxidative selenoproteins, such as glutathione peroxidase and thioredoxin reductase. Several studies, however, have revealed that dietary selenium in the form of l-selenomethionine and the 21st amino acid, selenocysteine, also have intrinsic anti-cancer properties. Biochemical mechanisms previously investigated to contribute to their anticancer effects involve β- and γ-lyase reactions. Some pyridoxal 5′-phosphate (PLP)-containing enzymes can catalyze a β-lyase reaction with Se-methyl-l-selenocysteine (MSC) generating pyruvate and ammonia. Other PLP-enzymes can catalyze a γ-lyase reaction with l-selenomethionine (SM) generating α-ketobutyrate and ammonia. In both cases, a purported third product is methylselenol (CH3SeH). Although not directly quantifiable, as a result of its extreme hydrophobicity and high vapor pressure, CH3SeH has been indirectly observed to act through the alteration of protein-sulfhydryl moieties on redox-responsive signal and transcription factors, thereby maintaining a non-proliferative intracellular environment. We have considered the possibility that α-keto acid analogues of MSC (i.e., methylselenopyruvate; MSP) and SM (i.e., α-keto-γ-methylselenobutyrate; KMSB), generated via a transamination and/or l-amino acid oxidase reaction may also be chemoprotective. Indeed, these compounds were shown to increase the level of histone-H3 acetylation in human prostate and colon cancer cells. MSP and KMSB structurally resemble butyrate, an inhibitor of several histone deacetylases. Thus, the seleno α-keto acid metabolites of MSC and SM, along with CH3SeH derived from β- and γ-lyase reactions, may be potential direct-acting metabolites of organoselenium that lead to de-repression of silenced tumor suppressor proteins and/or regulation of genes and signaling molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

DMDSe:

Dimethyldiselenide

KMSB:

α-Keto-γ-methylselenobutyrate

GTK:

Glutamine transaminase K

GTL:

Glutamine transaminase L

HDAC:

Histone deacetylase

LAAO:

l-Amino acid oxidase

MSC:

Se-Methyl-l-selenocysteine

MSA:

Methylseleninic acid

MSP:

β-Methylselenopyruvate

NaB:

Sodium butyrate

PBS:

Phosphate buffered saline

PLP:

Pyridoxal 5′-phosphate

PMP:

Pyridoxamine 5′-phosphate

SM:

l-Selenomethionine

References

  • Blarzino C, Coccia R, Pensa B, Cini C, De Marco C (1994) Selenomethionine as substrate for glutamine transaminase. Biochem Mol Biol Int 32:79–86

    PubMed  CAS  Google Scholar 

  • Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  PubMed  CAS  Google Scholar 

  • Boulland ML, Marquet J, Molinier-Frenkel V, Möller P, Guiter C, Lasoudris F, Copie-Bergman C, Baia M, Gaulard P, Leroy K, Castellano F (2007) Human IL4I1 is a secreted l-phenylalanine oxidase expressed by mature dendritic cells that inhibits T-lymphocyte proliferation. Blood 110:220–227

    Article  PubMed  CAS  Google Scholar 

  • Buggy JJ, Sideris ML, Mak P, Lorimer DD, McIntosh B, Clark JM (2000) Cloning and characterization of a novel human histone deacetylase, HDAC8. Biochem J 350:199–205

    Article  PubMed  CAS  Google Scholar 

  • Carbonnelle-Puscian A, Copie-Bergman C, Baia M, Martin-Garcia N, Allory Y, Haioun C, Crémades A, Abd-Alsamad I, Farcet JP, Gaulard P, Castellano F, Molinier-Frenkel V (2009) The novel immunosuppressive enzyme IL4I1 is expressed by neoplastic cells of several B-cell lymphomas and by tumor-associated macrophages. Leukemia 23:952–960

    Article  PubMed  CAS  Google Scholar 

  • Cavallini D, De Marco C, Moldovi B, Mori BG (1960) The cleavage of cystine by cystathionase and the transsulfuration of hypotaurine. Enzymologia 22:161–173

    PubMed  CAS  Google Scholar 

  • Chen Y, Maret W (2001) Catalytic selenols couple the redox cycles of metallothionein and glutathione. Eur J Biochem 268:3346–3353

    Article  PubMed  CAS  Google Scholar 

  • Chen YC, Sosnoski DM, Gandhi UH, Novinger LJ, Prabhu KS, Mastro AM (2009) Selenium modifies the osteoblast inflammatory stress response to bone metastatic breast cancer. Carcinogenesis 30:1941–1948

    Article  PubMed  CAS  Google Scholar 

  • Clark JP, Cooper CS (2009) ETS gene fusions in prostate cancer. Nat Rev Urol 6:429–439

    Article  PubMed  CAS  Google Scholar 

  • Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 276:1957–1963

    Article  PubMed  CAS  Google Scholar 

  • Combs GF Jr (2004) Status of selenium in prostate cancer prevention. Br J Cancer 91:195–199

    PubMed  CAS  Google Scholar 

  • Commandeur JNM, Andreadou I, Rooseboom M, Out M, de Leur LJ, Groot E, Vermeulen NPE (2000) Bioactivation of selenocysteine Se-conjugates by a highly purified rat renal cysteine conjugate β-lyase/glutamine transaminase K. J Pharmacol Exp Ther 294:753–761

    PubMed  CAS  Google Scholar 

  • Cooper AJL (1988) Glutamine aminotransferases and ω-amidases. In: Kvamme E (ed) Glutamine and glutamate in mammals. CRC Press, Boca Raton, pp 33–52

    Google Scholar 

  • Cooper AJL (1998) Mechanisms of cysteine S-conjugate β-lyases. Adv Enzymol Relat Areas Mol Biol 72:199–238

    PubMed  CAS  Google Scholar 

  • Cooper AJL (2004) The role of glutamine transaminase K (GTK) in sulfur and α-keto acid metabolism in the brain, and in the possible bioactivation of neurotoxicants. Neurochem Int 44:557–577

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Anders MW (1990) Glutamine transaminase K and cysteine conjugate β-lyase. Ann N Y Acad Sci 585:118–127

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Meister A (1981) Comparative studies of glutamine transaminases from rat tissues. Comp Biochem Physiol 69B:137–145

    CAS  Google Scholar 

  • Cooper AJL, Pinto JT (2005) Aminotransferase, l-amino acid oxidase and β-lyase reactions involving l-cysteine S-conjugates found in allium extracts. Relevance to biological activity? Biochem Pharmacol 69:209–220

    Article  PubMed  CAS  Google Scholar 

  • Cooper AJL, Pinto JT, Krasnikov BF, Niatsetskaya ZV, Han Q, Li J, Vauzour D, Spencer JPE (2008) Substrate specificity of human glutamine transaminase K as an aminotransferase and as a cysteine S-conjugate β-lyase. Arch Biochem Biophys 474:72–81

    Article  PubMed  CAS  Google Scholar 

  • Dokmanovic M, Clarke C, Marks PA (2007) Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 5:981–989

    Article  PubMed  CAS  Google Scholar 

  • Duffield-Lillico AJ, Dalkin BL, Reid ME, Turnbull BW, Slate EH, Jacobs ET, Marshall JR, Clark LC; Nutritional Prevention of Cancer Study Group (2003) Selenium supplementation, baseline plasma selenium status and incidence of prostate cancer: an analysis of the complete treatment period of the Nutritional Prevention of Cancer Trial. BJU Int 91:608–612

    Google Scholar 

  • Duley JA, Holmes RS (1976) l-α-Hydroxyacid oxidase isozymes. Purification and molecular properties. Eur J Biochem 63:163–173

    Article  PubMed  CAS  Google Scholar 

  • El-Bayoumy K (2009) The negative results of the SELECT study do not necessarily discredit the selenium-cancer prevention hypothesis. Nutr Cancer 61:285–286

    Article  PubMed  CAS  Google Scholar 

  • Frew AJ, Johnstone RW, Bolden JE (2009) Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett 280:125–133

    Article  PubMed  CAS  Google Scholar 

  • Ganther HE (1999) Selenium metabolism, selenoproteins and mechanisms of cancer prevention: complexities with thioredoxin reductase. Carcinogenesis 20:1657–1666

    Article  PubMed  CAS  Google Scholar 

  • Gasparian AV, Yao YJ, Lü J, Yemelyanov AY, Lyakh LA, Slaga TJ, Budunova IV (2002) Selenium compounds inhibit IκB kinase (IKK) and nuclear factor-κB (NF-κB) in prostate cancer cells. Mol Cancer Ther 1:1079–1087

    PubMed  CAS  Google Scholar 

  • Giacinti L, Vici P, Lopez M (2008) Epigenome: a new target in cancer therapy. Clin Ter 159:347–360

    PubMed  CAS  Google Scholar 

  • Hatfield DL, Gladyshev VN (2009) The Outcome of Selenium and Vitamin E Cancer Prevention Trial (SELECT) reveals the need for better understanding of selenium biology. Mol Interv 9:18–21

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Waknitz M (2009) ETS gene fusions and prostate cancer. Am J Transl Res 1:341–351

    PubMed  CAS  Google Scholar 

  • Huber RE, Criddle RS (1967) Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch Biochem Biophys 122:164–173

    Article  PubMed  CAS  Google Scholar 

  • Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A, Altucci L, Nervi C, Minucci S, Pelicci PG (2005) Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med 11:71–76

    Article  PubMed  CAS  Google Scholar 

  • Ip C (1998) Lessons from basic research in selenium and cancer prevention. J Nutr 128:1845–1854

    PubMed  CAS  Google Scholar 

  • Ip C, Thompson HJ, Shu Z, Ganther HE (2000) In vitro and in vivo studies of methylseleninic acid: evidence that a monomethylated selenium metabolite is critical for cancer chemoprevention. Cancer Res 60:2882–2886

    PubMed  CAS  Google Scholar 

  • Jiang C, Wang Z, Ganther H, Lü J (2002) Distinct effects of methylseleninic acid versus selenite on apoptosis, cell cycle, and protein kinase pathways in DU145 human prostate cancer cells. Mol Cancer Ther 1:1059–1066

    PubMed  CAS  Google Scholar 

  • Keppler BR, Archer TK (2008) Chromatin-modifying enzymes as therapeutic targets—Part 2. Expert Opin Ther Targets 12:1457–1467

    Article  PubMed  Google Scholar 

  • Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, Coltman C (2001) SELECT: the next prostate cancer prevention trial Selenum and Vitamin E Cancer Prevention Trial. J Urol 166:1311–1315

    Article  PubMed  CAS  Google Scholar 

  • Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, Coltman C (2003) SELECT: the selenium and vitamin E cancer prevention trial. Urol Oncol 21:59–65

    Article  PubMed  CAS  Google Scholar 

  • Laclaustra M, Navas-Acien A, Stranges S, Ordovas JM, Guallar E (2009) Serum selenium concentrations, diabetes in U.S. adults: National Health, Nutrition Examination Survey (NHANES) 2003–2004. Environ Health Perspect 117:1409–1413

    PubMed  CAS  Google Scholar 

  • Lane AA, Chabner BA (2009) Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 27:5459–5468

    Article  PubMed  CAS  Google Scholar 

  • Lee JI, Nian H, Cooper AJL, Sinha R, Dai J, Bisson WH, Dashwood RH, Pinto JT (2009) α-Keto acid metabolites of naturally occurring organoselenium compounds as inhibitors of histone deacetylase in human prostate cancer cells. Cancer Prev Res 2:683–693

    Article  CAS  Google Scholar 

  • Li GX, Lee HJ, Wang Z, Hu H, Liao JD, Watts JC, Combs GF Jr, Lü J (2008) Superior in vivo inhibitory efficacy of methylseleninic acid against human prostate cancer over selenomethionine or selenite. Carcinogenesis 29:1005–1012

    Article  PubMed  CAS  Google Scholar 

  • Lichtenberg LA, Wellner D (1968) A sensitive fluorometric assay for amino acid oxidase. Anal Biochem 26:313–319

    Article  PubMed  CAS  Google Scholar 

  • Lillig CH, Holmgren A (2007) Thioredoxin and related molecules—from biology to health and disease. Antioxid Redox Signal 9:25–47

    Article  PubMed  CAS  Google Scholar 

  • Lippman SM, Goodman PJ, Klein EA, Parnes HL, Thompson IM Jr, Kristal AR, Santella RM, Probstfield JL, Moinpour CM, Albanes D, Taylor PR, Minasian LM, Hoque A, Thomas SM, Crowley JJ, Gaziano JM, Stanford JL, Cook ED, Fleshner NE, Lieber MM, Walther PJ, Khuri FR, Karp DD, Schwartz GG, Ford LG, Coltman CA Jr (2005) Designing the Selenium and Vitamin E Cancer Prevention Trial (SELECT). J Natl Cancer Inst 97:94–102

    Article  PubMed  CAS  Google Scholar 

  • Lippman SM, Klein EA, Goodman PJ, Lucia MS, Thompson IM, Ford LG, Parnes HL, Minasian LM, Gaziano JM, Hartline JA, Parsons JK, Bearden JD 3rd, Crawford ED, Goodman GE, Claudio J, Winquist E, Cook ED, Karp DD, Walther P, Lieber MM, Kristal AR, Darke AK, Arnold KB, Ganz PA, Santella RM, Albanes D, Taylor PR, Probstfield JL, Jagpal TJ, Crowley JJ, Meyskens FL Jr, Baker LH, Coltman CA Jr (2009) Effect of selenium and vitamin E on risk of prostate cancer and other cancers: The Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 301:39–51

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Li S, Gan L, Kao TP, Huang H (2008) A transcription-independent function of FOXO1 in inhibition of androgen-independent activation of the androgen receptor in prostate cancer cells. Cancer Res 68:10290–10299

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Jiang C (2001) Antiangiogenic activity of selenium in cancer chemoprevention: metabolite-specific effects. Nutr Cancer 40:64–73

    Article  PubMed  CAS  Google Scholar 

  • Marks PA, Xu WS (2009) Histone deacetylase inhibitors: Potential in cancer therapy. J Cell Biochem 107:600–608

    Article  PubMed  CAS  Google Scholar 

  • Mason JM, Naidu MD, Barcia M, Porti D, Chavan SS, Chu CC (2004) IL-4-induced gene-1 is a leukocyte l-amino acid oxidase with an unusual acidic pH preference and lysosomal localization. J Immunol 173:4561–4567

    PubMed  CAS  Google Scholar 

  • Meister A, Sober HA, Tice SV, Fraser PE (1952) Transamination and associated deamidation of asparagine and glutamine. J Biol Chem 197:319–330

    PubMed  CAS  Google Scholar 

  • Moeller T (1963) Inorganic chemistry: an advanced textbook. Wiley, New York, p 135

    Google Scholar 

  • Myzak MC, Karplus PA, Chung FL, Dashwood RH (2004) A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase. Cancer Res 64:5767–5774

    Article  PubMed  CAS  Google Scholar 

  • Nagaoka K, Aoki F, Hayashi M, Muroi Y, Sakurai T, Itoh K, Ikawa M, Okabe M, Imakawa K, Sakai S (2009) l-Amino acid oxidase plays a crucial role in host defense in the mammary glands. FASEB J 23:2514–2520

    Article  PubMed  CAS  Google Scholar 

  • Nian H, Delage B, Pinto JT, Dashwood RH (2008) Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis 29:1816–1824

    Article  PubMed  CAS  Google Scholar 

  • Nian H, Delage B, Ho E, Dashwood RH (2009a) Modulation of histone deacetylase activity by dietary isothiocyanates and allyl sulfides: studies with sulforaphane and garlic organosulfur compounds. Environ Mol Mutagen 50:213–221

    Article  PubMed  CAS  Google Scholar 

  • Nian H, Bisson WH, Dashwood W-M, Pinto JT, Dashwood RH (2009b) α-Keto acid metabolites of organoselenium compounds inhibit histone deacetylase activity in human colon cancer cells. Carcinogenesis 30:1416–1423

    Article  PubMed  CAS  Google Scholar 

  • Ohta Y, Kobayashi Y, Konishi S, Hirano S (2009) Speciation analysis of selenium metabolites in urine and breath by HPLC- and GC-inductively coupled plasma-MS after administration of selenomethionine and methylselenocysteine to rats. Chem Res Toxicol 22:1795–1801

    Article  PubMed  CAS  Google Scholar 

  • Okuno T, Motobayashi S, Ueno H, Nakamuro K (2005) Identification of mouse selenomethionine α, γ-elimination enzyme: cystathionine γ-lyase catalyzes its reaction to generate methylselenol. Biol Trace Elem Res 108:245–257

    Article  PubMed  CAS  Google Scholar 

  • Papp LV, Lu J, Holmgren A, Khanna KK (2007) From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal 9:775–806

    Article  PubMed  CAS  Google Scholar 

  • Pinto JT, Sinha R, Papp K, Facompre ND, Desai D, El-Bayoumy K (2007) Differential effects of naturally occurring and synthetic organoselenium compounds on biomarkers in androgen responsive and androgen independent human prostate carcinoma cells. Int J Cancer 120:1410–1417

    Article  PubMed  CAS  Google Scholar 

  • Puccetti E, Obradovic D, Beissert T, Bianchini A, Washburn B, Chiaradonna F, Boehrer S, Hoelzer D, Ottmann OG, Pelicci PG, Nervi C, Ruthardt M (2002) AML-associated translocation products block vitamin D3-induced differentiation by sequestering the vitamin D3 receptor. Cancer Res 62:7050–7058

    PubMed  CAS  Google Scholar 

  • Ravn-Haren G, Krath BN, Overvad K, Cold S, Moesgaard S, Larsen EH, Dragsted LO (2007) Effect of long-term selenium yeast intervention on activity and gene expression of antioxidant and xenobiotic metabolizing enzymes in healthy elderly volunteers from the Danish Prevention of Cancer by Intervention by Selenium (PRECISE) pilot study. Br J Nutr 99:1190–1198

    PubMed  Google Scholar 

  • Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97:10014–10019

    Article  PubMed  CAS  Google Scholar 

  • Rooseboom M, Vermeulen NPE, Durgut F, Commandeur JNM (2002) Comparative study on the bioactivation mechanisms and cytotoxicity of Te-phenyl-l-tellurocysteine, Se-phenyl-l-selenocysteine, and S-phenyl-l-cysteine. Chem Res Toxicol 15:1610–1618

    Article  PubMed  CAS  Google Scholar 

  • Rudolf E, Králová V, Cervinka M (2008) Selenium and colon cancer—from chemoprevention to new treatment modality. Anticancer Agents Med Chem 8:598–602

    PubMed  CAS  Google Scholar 

  • Sanmartín C, Plano D, Palop JA (2008) Selenium compounds and apoptotic modulation: a new perspective in cancer therapy. Mini Rev Med Chem 8:1020–1031

    Article  PubMed  Google Scholar 

  • Scher HI, Mazumdar M, Kelly WK (1996) Clinical trials in relapsed prostate cancer: Defining the target. J Natl Canc Inst 88:1623–1634

    Article  CAS  Google Scholar 

  • Shah RB, Mehra R, Chinnaiyan AM, Shen R, Ghosh D, Zhou M, Macvicar GR, Varambally S, Harwood J, Bismar TA, Kim R, Rubin MA, Pienta KJ (2004) Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res 64:9209–9216

    Article  PubMed  CAS  Google Scholar 

  • Shankar S, Srivastava RK (2008) Histone deacetylase inhibitors: mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. Adv Exp Med Biol 615:261–298

    Article  PubMed  CAS  Google Scholar 

  • Singh U, Null K, Sinha R (2008) In vitro growth inhibition of mouse mammary epithelial tumor cells by methylseleninic acid: involvement of protein kinases. Mol Nutr Food Res 52:1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Sinha R, El-Bayoumy K (2004) Apoptosis is a critical cellular event in cancer chemoprevention and chemotherapy by selenium compounds. Curr Cancer Drug Targets 4:13–28

    Article  PubMed  CAS  Google Scholar 

  • Sinha R, Pinto JT, Facompre N, Kilheffer J, Baatz JE, El-Bayoumy K (2008) Effects of naturally occurring and synthetic organoselenium compounds on protein profiling in androgen responsive and androgen independent human prostate cancer cells. Nutr Cancer 60:267–275

    Article  PubMed  CAS  Google Scholar 

  • Sinha R, Sinha I, Null K, King T, Wolter W, Suckow M (2009) Methylseleninic acid inhibits HIF-1α in hormone refractory prostate cancer. [Abstract]. In: Proceedings of the 100th Annual Meeting of the American Association for Cancer Research; 18–22 April 2009, Denver, CO. AACR, Philadelphia (Abstract # 5583)

  • Spallholz JE, Shriver BJ, Reid TW (2001) Dimethyldiselenide and methylseleninic acid generate superoxide in an in vitro chemiluminescence assay in the presence of glutathione: implications for the anticarcinogenic activity of l-selenomethionine and l-Se-methylselenocysteine. Nutr Cancer 40:34–41

    Article  PubMed  CAS  Google Scholar 

  • Stevens JL, Robbins JD, Byrd RA (1986) A purified cysteine conjugate β-lyase from rat kidney cytosol Requirement for an α-keto acid or an amino acid oxidase for activity and identity with soluble glutamine transaminase K. J Biol Chem 261:15529–15537

    PubMed  CAS  Google Scholar 

  • Sun Y, Nonobe E, Kobayashi Y, Kuraishi T, Aoki F, Yamamoto K, Sakai S (2002) Characterization and expression of l-amino acid oxidase of mouse milk. J Biol Chem 277:19080–19086

    Article  PubMed  CAS  Google Scholar 

  • Suzana S, Cham BG, Ahmad Rohi G, Mohd Rizal R, Fairulnizal MN, Normah H, Fatimah A (2009) Relationship between selenium and breast cancer: a case-control study in the Klang Valley. Singapore Med J 50:265–269

    PubMed  CAS  Google Scholar 

  • Suzuki KT, Tsuji Y, Ohta Y, Suzuki N (2008) Preferential organ distribution of methylselenol source Se-methylselenocysteine relative to methylseleninic acid. Toxicol Appl Pharmacol 227:76–83

    Article  PubMed  CAS  Google Scholar 

  • Tsuji Y, Suzuki N, T Suzuki K, Ogra Y (2009) Selenium metabolism in rats with long-term ingestion of Se-methylselenocysteine using enriched stable isotopes. J Toxicol Sci 34:191–200

  • Ungerstedt JS, Sowa Y, Xu WS, Shao Y, Dokmanovic M, Perez G, Ngo L, Holmgren A, Jiang X, Marks PA (2005) Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors. Proc Natl Acad Sci USA 102:673–678

    Article  PubMed  CAS  Google Scholar 

  • Unni E, Koul D, Yung W-K, Sinha R (2005) Se-methylselenocysteine inhibits phosphatidylinositol 3-kinase activity of mouse mammary epithelial tumor cells in vitro. Breast Cancer Res 7:R699–R707

    Article  PubMed  CAS  Google Scholar 

  • Vanommeslaeghe K, Loverix S, Geerlings P, Tourwé D (2005) DFT-based ranking of zinc-binding groups in histone deacetylase inhibitors. Bioorg Med Chem 13:6070–6082

    Article  PubMed  CAS  Google Scholar 

  • Venkateswaran V, Klotz LH, Fleshner NE (2002) Selenium modulation of cell proliferation and cell cycle biomarkers in human prostate carcinoma cell lines. Cancer Res 62:2540–2545

    PubMed  CAS  Google Scholar 

  • Vigushin DM, Coombes RC (2004) Targeted histone deacetylase inhibition for cancer therapy. Curr Cancer Drug Targets 4:205–218

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Jiang C, Lu J (2002) Induction of caspase-mediated apoptosis and cell-cycle G1 arrest by selenium metabolite methylselenol. Mol Carcinog 34:113–120

    Article  PubMed  CAS  Google Scholar 

  • Wang LG, Liu XM, Fang Y, Dai W, Chiao FB, Puccio GM, Feng J, Liu D, Chiao JW (2008) De-repression of the p21 promoter in prostate cancer cells by an isothiocyanate via inhibition of HDACs and c-Myc. Int J Oncol 33:375–380

    PubMed  CAS  Google Scholar 

  • Wang L, Zou X, Berger AD, Twiss C, Peng Y, Li Y, Chiu J, Guo H, Satagopan J, Wilton A, Gerald W, Basch R, Wang Z, Osman I, Lee P (2009) Increased expression of histone deacetylases (HDACs) and inhibition of prostate cancer growth and invasion by HDAC inhibitor SAHA. Am J Transl Res 1:62–71

    PubMed  CAS  Google Scholar 

  • Welsbie DS, Xu J, Chen Y, Borsu L, Scher HI, Rosen N, Sawyers CL (2009) Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. Cancer Res 69:958–966

    Article  PubMed  CAS  Google Scholar 

  • Wessjohann LA, Schneider A, Abbas M, Brandt W (2007) Selenium in chemistry and biochemistry in comparison to sulfur. Biol Chem 388:997–1006

    Article  PubMed  CAS  Google Scholar 

  • Whanger PD (2004) Selenium and its relationship to cancer: an update. Br J Nutr 91:11–28

    Article  PubMed  CAS  Google Scholar 

  • Xiong SD, Yu K, Liu XH, Yin LH, Kirschenbaum A, Yao S, Narla G, DiFeo A, Wu JB, Yuan Y, Ho SM, Lam YW, Levine AC (2009) Ribosome-inactivating proteins isolated from dietary bitter melon induce apoptosis and inhibit histone deacetylase-1 selectively in premalignant and malignant prostate cancer cells. Int J Cancer 125:774–782 (Erratum in: Int J Cancer (2009) 125:1995)

    Google Scholar 

  • Xu WS, Parmigiani RB, Marks PA (2007) Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26:5541–5552

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Hou H, Haller EM, Nicosia SV, Bai W (2005) Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J 24:1021–1032

    Article  PubMed  CAS  Google Scholar 

  • Zeng H, Wu M, Botnen JH (2009) Methylselenol, a selenium metabolite, induces cell cycle arrest in G1 phase and apoptosis via the extracellular-regulated kinase 1/2 pathway and other cancer signaling genes. J Nutr 139:1613–1618

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants CA111842 (to JTP & RS) and ES8421 (to AJLC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Pinto.

Additional information

This article is published as part of the Special Issue on sulfur- and seleno-containing amino acids.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pinto, J.T., Lee, JI., Sinha, R. et al. Chemopreventive mechanisms of α-keto acid metabolites of naturally occurring organoselenium compounds. Amino Acids 41, 29–41 (2011). https://doi.org/10.1007/s00726-010-0578-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-010-0578-3

Keywords

Navigation