Skip to main content

Advertisement

Log in

TG2 protects neuroblastoma cells against DNA-damage-induced stress, suppresses p53 activation

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Tissue transglutaminase (TG2) is a multifunctional member of the transglutaminase (TGase) family (E.C.2.3.2.13), which catalyzes in a calcium-dependent reaction the formation of covalent bonds between the γ-carboxamide groups of peptide-bound glutamine residues and various primary amines. Here, we investigated the role of TG2 in a response of the neuroblastoma SH-SY5Y cells to topoisomerase II inhibitor etoposide, known to trigger DNA-damage cell response. We found an early and transient (~2 h) increase of the TG2 protein in SH-SY5Y cells treated with etoposide, along with the increase of phosphorylated and total levels of the p53 protein. Next, we showed that SH-SY5Y cells, which overexpress wild-type TG2 were significantly protected against etoposide-induced cell death. The TG2 protective effect was associated only with the transamidation active form of TG2, because overexpression the wild-type TG2, but not its transamidation inactive C277S form, resulted in a pronounced suppression of caspase-3 activity as well as p53 phosphorylation during the etoposide-induced stress. In addition, exacerbation of cell death with a significant increase in caspase-3 and p53 activation was observed in SH/anti-TG2 cells, in which expression of the endogenous TG2 protein has been greatly reduced by the antisense cDNA construct. Though the cell signaling and molecular mechanisms of the TG2-driven suppression of the cell death machinery remain to be investigated, our findings strongly suggest that TG2 plays an active role in the response of neuroblastoma cells to DNA-damage-induced stress by exerting a strong protective effect, likely by the suppression of p53 activation and p53-driven cell signaling events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achyuthan KE, Greenberg CS (1987) Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J Biol Chem 262:1901–1906

    CAS  PubMed  Google Scholar 

  • Ai L, Kim WJ, Demircan B, Dyer LM, Bray KJ, Skehan RR, Massoll NA, Brown KD (2008) The transglutaminase 2 gene (TGM2), a potential molecular marker for chemotherapeutic drug sensitivity, is epigenetically silenced in breast cancer. Carcinogenesis 29:510–518

    Article  CAS  PubMed  Google Scholar 

  • Antonyak MA, Singh US, Lee DA, Boehm JE, Combs C, Zgola MM, Page RL, Cerione RA (2001) Effects of tissue transglutaminase on retinoic acid-induced cellular differentiation and protection against apoptosis. J Biol Chem 276:33582–33587

    Article  CAS  PubMed  Google Scholar 

  • Bailey CD, Johnson GV (2004) Developmental regulation of tissue transglutaminase in the mouse forebrain. J Neurochem 91:1369–1379

    Article  CAS  PubMed  Google Scholar 

  • Barbieri E, Mehta P, Chen Z, Zhang L, Slack A, Berg S, Shohet JM (2006) MDM2 inhibition sensitizes neuroblastoma to chemotherapy-induced apoptotic cell death. Mol Cancer Ther 5:2358–2365

    Article  CAS  PubMed  Google Scholar 

  • Bastien J, Rochette-Egly C (2004) Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene 328:1–16

    Article  CAS  PubMed  Google Scholar 

  • Biedler JL, Spengler BA (1976) A novel chromosome abnormality in human neuroblastoma and antifolate-resistant Chinese hamster cell lives in culture. J Natl Cancer Inst 57:683–695

    CAS  PubMed  Google Scholar 

  • Buommino E, Pasquali D, Sinisi AA, Bellastella A, Morelli F, Metafora S (2000) Sodium butyrate/retinoic acid costimulation induces apoptosis-independent growth arrest and cell differentiation in normal and ras-transformed seminal vesicle epithelial cells unresponsive to retinoic acid. J Mol Endocrinol 24:83–94

    Article  CAS  PubMed  Google Scholar 

  • Burden DA, Osheroff N (1998) Mechanism of action of eukaryotic topoisomerase II and drugs targeted to the enzyme. Biochimica et Biophysica Acta (BBA) Gene Struct Expr 1400:139–154

    Article  CAS  Google Scholar 

  • Campisi A, Caccamo D, Raciti G, Cannavo G, Macaione V, Curro M, Macaione S, Vanella A, Ientile R (2003) Glutamate-induced increases in transglutaminase activity in primary cultures of astroglial cells. Brain Res 978:24–30

    Article  CAS  PubMed  Google Scholar 

  • Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849–852

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Schroering A, Ding HF (2002) p53 mediates DNA damaging drug-induced apoptosis through a caspase-9-dependent pathway in SH-SY5Y neuroblastoma cells. Mol Cancer Ther 1:679–686

    CAS  PubMed  Google Scholar 

  • Curro M, Condello S, Caccamo D, Ferlazzo N, Parisi G, Ientile R (2009) Homocysteine-induced toxicity increases TG2 expression in Neuro2a cells. Amino Acids 36:725–730

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Antonyak MA, Cerione RA (2006) Importance of Ca(2+)-dependent transamidation activity in the protection afforded by tissue transglutaminase against doxorubicin-induced apoptosis. Biochemistry 45:13163–13174

    Article  CAS  PubMed  Google Scholar 

  • Davidoff AM, Pence JC, Shorter NA, Iglehart JD, Marks JR (1992) Expression of p53 in human neuroblastoma- and neuroepithelioma-derived cell lines. Oncogene 7:127–133

    CAS  PubMed  Google Scholar 

  • Encinas M, Iglesias M, Llecha N, Comella JX (1999) Extracellular-regulated kinases and phosphatidylinositol 3-kinase are involved in brain-derived neurotrophic factor-mediated survival and neuritogenesis of the neuroblastoma cell line SH-SY5Y. J Neurochem 73:1409–1421

    Article  CAS  PubMed  Google Scholar 

  • Fabbi M, Marimpietri D, Martini S, Brancolini C, Amoresano A, Scaloni A, Bargellesi A, Cosulich E (1999) Tissue transglutaminase is a caspase substrate during apoptosis. Cleavage causes loss of transamidating function and is a biochemical marker of caspase 3 activation. Cell Death Differ 6:992–1001

    Article  CAS  PubMed  Google Scholar 

  • Facchiano F, D’Arcangelo D, Riccomi A, Lentini A, Beninati S, Capogrossi MC (2001) Transglutaminase activity is involved in polyamine-induced programmed cell death. Exp Cell Res 271:118–129

    Article  CAS  PubMed  Google Scholar 

  • Filiano AJ, Bailey CD, Tucholski J, Gundemir S, Johnson GV (2008) Transglutaminase 2 protects against ischemic insult, interacts with HIF1beta, and attenuates HIF1 signaling. Faseb J 22:2662–2675

    Article  CAS  PubMed  Google Scholar 

  • Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741

    Article  CAS  PubMed  Google Scholar 

  • Han JA, Park SC (1999) Reduction of transglutaminase 2 expression is associated with an induction of drug sensitivity in the PC-14 human lung cancer cell line. J Cancer Res Clin Oncol 125:89–95

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa G, Suwa M, Ichikawa Y, Ohtsuka T, Kumagai S, Kikuchi M, Sato Y, Saito Y (2003) A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J 373:793–803

    Article  CAS  PubMed  Google Scholar 

  • Ientile R, Caccamo D, Griffin M (2007) Tissue transglutaminase and the stress response. Amino Acids 33:385–394

    Article  CAS  PubMed  Google Scholar 

  • Iismaa SE, Chung L, Wu MJ, Teller DC, Yee VC, Graham RM (1997) The core domain of the tissue transglutaminase Gh hydrolyzes GTP and ATP. Biochemistry 36:11655–11664

    Article  CAS  PubMed  Google Scholar 

  • Jeong EM, Kim C-W, Cho S-Y, Jang G-Y, Shin D-M, Jeon J-H, Kim I-G (2009) Degradation of transglutaminase 2 by calcium-mediated ubiquitination responding to high oxidative stress. FEBS Lett 583:648–654

    Article  CAS  PubMed  Google Scholar 

  • Joshi S, Guleria R, Pan J, DiPette D, Singh US (2006) Retinoic acid receptors and tissue-transglutaminase mediate short-term effect of retinoic acid on migration and invasion of neuroblastoma SH-SY5Y cells. Oncogene 25:240–247

    CAS  PubMed  Google Scholar 

  • Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819

    Article  CAS  PubMed  Google Scholar 

  • Keshelava N, Zuo JJ, Chen P, Waidyaratne SN, Luna MC, Gomer CJ, Triche TJ, Reynolds CP (2001) Loss of p53 function confers high-level multidrug resistance in neuroblastoma cell lines. Cancer Res 61:6185–6193

    CAS  PubMed  Google Scholar 

  • Kim SY, Grant P, Lee JH, Pant HC, Steinert PM (1999) Differential expression of multiple transglutaminases in human brain. Increased expression and cross-linking by transglutaminases 1 and 2 in Alzheimer’s disease. J Biol Chem 274:30715–30721

    Article  CAS  PubMed  Google Scholar 

  • Lavoie JF, Lesauteur L, Kohn J, Wong J, Furtoss O, Thiele CJ, Miller FD, Kaplan DR (2005) TrkA induces apoptosis of neuroblastoma cells and does so via a p53-dependent mechanism. J Biol Chem 280:29199–29207

    Article  CAS  PubMed  Google Scholar 

  • Lee KN, Arnold SA, Birckbichler PJ, Patterson MK, Fraij BM Jr, Takeuchi Y, Carter HA (1993) Site-directed mutagenesis of human tissue transglutaminase: Cys-277 is essential for transglutaminase activity but not for GTPase activity. Biochim Biophys Acta 1202:1–6

    CAS  PubMed  Google Scholar 

  • Lesort M, Tucholski J, Zhang J, Johnson GV (2000a) Impaired mitochondrial function results in increased tissue transglutaminase activity in situ. J Neurochem 75:1951–1961

    Article  CAS  PubMed  Google Scholar 

  • Lesort M, Tucholski J, Miller ML, Johnson GV (2000b) Tissue transglutaminase: a possible role in neurodegenerative diseases. Prog Neurobiol 61:439–463

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Tee AE, Porro A, Smith SA, Dwarte T, Liu PY, Iraci N, Sekyere E, Haber M, Norris MD, Diolaiti D, Della Valle G, Perini G, Marshall GM (2007) Activation of tissue transglutaminase transcription by histone deacetylase inhibition as a therapeutic approach for Myc oncogenesis. Proc Natl Acad Sci USA 104:18682–18687

    Article  CAS  PubMed  Google Scholar 

  • Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849

    Article  CAS  PubMed  Google Scholar 

  • Mandrusiak LM, Beitel LK, Wang X, Scanlon TC, Chevalier-Larsen E, Merry DE, Trifiro MA (2003) Transglutaminase potentiates ligand-dependent proteasome dysfunction induced by polyglutamine-expanded androgen receptor. Hum Mol Genet 12:1497–1506

    Article  CAS  PubMed  Google Scholar 

  • Maris JM, Hogarty MD, Bagatell R, Cohn SL (2007) Neuroblastoma. Lancet 369:2106–2120

    Article  CAS  PubMed  Google Scholar 

  • Matthay KK, Villablanca JG, Seeger RC, Stram DO, Harris RE, Ramsay NK, Swift P, Shimada H, Black CT, Brodeur GM, Gerbing RB, Reynolds CP (1999) Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children’s Cancer Group. N Engl J Med 341:1165–1173

    Article  CAS  PubMed  Google Scholar 

  • McClendon AK, Osheroff N (2007) DNA topoisomerase II, genotoxicity, and cancer. Mutat Res 623:83–97

    CAS  PubMed  Google Scholar 

  • Mehta K (1994) High levels of transglutaminase expression in doxorubicin-resistant human breast carcinoma cells. Int J Cancer 58:400–406

    Article  CAS  PubMed  Google Scholar 

  • Mehta K (2005) Mammalian transglutaminases: a family portrait. Prog Exp Tumor Res 38:1–18

    Article  CAS  PubMed  Google Scholar 

  • Melino G, Annicchiarico-Petruzzelli M, Piredda L, Candi E, Gentile V, Davies PJ, Piacentini M (1994) Tissue transglutaminase and apoptosis: sense and antisense transfection studies with human neuroblastoma cells. Mol Cell Biol 14:6584–6596

    CAS  PubMed  Google Scholar 

  • Mian S, El Alaoui S, Lawry J, Gentile V, Davies PJ, Griffin M (1995) The importance of the GTP-binding protein tissue transglutaminase in the regulation of cell cycle progression. FEBS Lett 370:27–31

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Murphy LJ (2006) The p53 oncoprotein is a substrate for tissue transglutaminase kinase activity. Biochem Biophys Res Commun 339:726–730

    Article  CAS  PubMed  Google Scholar 

  • Murthy SN, Lomasney JW, Mak EC, Lorand L (1999) Interactions of G(h)/transglutaminase with phospholipase Cdelta1 and with GTP. Proc Natl Acad Sci USA 96:11815–11819

    Article  CAS  PubMed  Google Scholar 

  • Nagy L, Saydak M, Shipley N, Lu S, Basilion JP, Yan ZH, Syka P, Chandraratna RA, Stein JP, Heyman RA, Davies PJ (1996) Identification and characterization of a versatile retinoid response element (retinoic acid receptor response element-retinoid X receptor response element) in the mouse tissue transglutaminase gene promoter. J Biol Chem 271:4355–4365

    Article  CAS  PubMed  Google Scholar 

  • Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K, Im MJ, Graham RM (1994) Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 264:1593–1596

    Article  CAS  PubMed  Google Scholar 

  • Pahlman S, Ruusala AI, Abrahamsson L, Mattsson ME, Esscher T (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbol ester-induced differentiation. Cell Differ 14:135–144

    Article  CAS  PubMed  Google Scholar 

  • Piacentini M, Annicchiarico-Petruzzelli M, Oliverio S, Piredda L, Biedler JL, Melino E (1992) Phenotype-specific “tissue” transglutaminase regulation in human neuroblastoma cells in response to retinoic acid: correlation with cell death by apoptosis. Int J Cancer 52:271–278

    Article  CAS  PubMed  Google Scholar 

  • Piacentini M, Piredda L, Starace DT, Annicchiarico-Petruzzelli M, Mattei M, Oliverio S, Farrace MG, Melino G (1996) Differential growth of N- and S-type human neuroblastoma cells xenografted into SCID mice: correlation with apoptosis. J Pathol 180:415–422

    Article  CAS  PubMed  Google Scholar 

  • Piacentini M, Farrace MG, Piredda L, Matarrese P, Ciccosanti F, Falasca L, Rodolfo C, Giammarioli AM, Verderio E, Griffin M, Malorni W (2002) Transglutaminase overexpression sensitizes neuronal cell lines to apoptosis by increasing mitochondrial membrane potential and cellular oxidative stress. J Neurochem 81:1061–1072

    Article  CAS  PubMed  Google Scholar 

  • Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126

    Article  CAS  PubMed  Google Scholar 

  • Reynolds CP, Kane DJ, Einhorn PA, Matthay KK, Crouse VL, Wilbur JR, Shurin SB, Seeger RC (1991) Response of neuroblastoma to retinoic acid in vitro and in vivo. Prog Clin Biol Res 366:203–211

    CAS  PubMed  Google Scholar 

  • Robitaille K, Daviau A, Tucholski J, Johnson GV, Rancourt C, Blouin R (2004) Tissue transglutaminase triggers oligomerization and activation of dual leucine zipper-bearing kinase in calphostin C-treated cells to facilitate apoptosis. Cell Death Differ 11:542–549

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Lopez AM, Xenaki D, Eden TO, Hickman JA, Chresta CM (2001) MDM2 mediated nuclear exclusion of p53 attenuates etoposide-induced apoptosis in neuroblastoma cells. Mol Pharmacol 59:135–143

    CAS  PubMed  Google Scholar 

  • Ronca F, Yee KS, Yu VC (1999) Retinoic acid confers resistance to p53-dependent apoptosis in SH-SY5Y neuroblastoma cells by modulating nuclear import of p53. J Biol Chem 274:18128–18134

    Article  CAS  PubMed  Google Scholar 

  • Ross RA, Spengler BA (2007) Human neuroblastoma stem cells. Semin Cancer Biol 17:241–247

    Article  CAS  PubMed  Google Scholar 

  • Ross RA, Spengler BA, Biedler JL (1983) Coordinate morphological and biochemical interconversion of human neuroblastoma cells. J Natl Cancer Inst 71:741–747

    CAS  PubMed  Google Scholar 

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85

    Article  CAS  PubMed  Google Scholar 

  • Sidell N, Koeffler HP (1988) Modulation of Mr 53, 000 protein with induction of differentiation of human neuroblastoma cells. Cancer Res 48:2226–2230

    CAS  PubMed  Google Scholar 

  • Singh US, Pan J, Kao YL, Joshi S, Young KL, Baker KM (2003) Tissue transglutaminase mediates activation of RhoA and MAP kinase pathways during retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J Biol Chem 278:391–399

    Article  CAS  PubMed  Google Scholar 

  • Szondy Z, Molnar P, Nemes Z, Boyiadzis M, Kedei N, Toth R, Fesus L (1997) Differential expression of tissue transglutaminase during in vivo apoptosis of thymocytes induced via distinct signalling pathways. FEBS Lett 404:307–313

    Article  CAS  PubMed  Google Scholar 

  • Szondy Z, Sarang Z, Molnar P, Nemeth T, Piacentini M, Mastroberardino PG, Falasca L, Aeschlimann D, Kovacs J, Kiss I, Szegezdi E, Lakos G, Rajnavolgyi E, Birckbichler PJ, Melino G, Fesus L (2003) Transglutaminase 2−/− mice reveal a phagocytosis-associated crosstalk between macrophages and apoptotic cells. Proc Natl Acad Sci USA 100:7812–7817

    Article  CAS  PubMed  Google Scholar 

  • Thiele CJ, Reynolds CP, Israel MA (1985) Decreased expression of N-myc precedes retinoic acid-induced morphological differentiation of human neuroblastoma. Nature 313:404–406

    Article  CAS  PubMed  Google Scholar 

  • Tucholski J, Johnson GV (2002) Tissue transglutaminase differentially modulates apoptosis in a stimuli-dependent manner. J Neurochem 81:780–791

    Article  CAS  PubMed  Google Scholar 

  • Tucholski J, Johnson GV (2003) Tissue transglutaminase directly regulates adenylyl cyclase resulting in enhanced cAMP-response element-binding protein (CREB) activation. J Biol Chem 278:26838–26843

    Article  CAS  PubMed  Google Scholar 

  • Tucholski J, Kuret J, Johnson GV (1999) Tau is modified by tissue transglutaminase in situ: possible functional and metabolic effects of polyamination. J Neurochem 73:1871–1880

    CAS  PubMed  Google Scholar 

  • Tucholski J, Lesort M, Johnson GV (2001) Tissue transglutaminase is essential for neurite outgrowth in human neuroblastoma SH-SY5Y cells. Neuroscience 102:481–491

    Article  CAS  PubMed  Google Scholar 

  • Tucholski J, Roth KA, Johnson GV (2006) Tissue transglutaminase overexpression in the brain potentiates calcium-induced hippocampal damage. J Neurochem 97:582–594

    Article  CAS  PubMed  Google Scholar 

  • Tweddle DA, Malcolm AJ, Cole M, Pearson AD, Lunec J (2001) p53 cellular localization and function in neuroblastoma: evidence for defective G(1) arrest despite WAF1 induction in MYCN-amplified cells. Am J Pathol 158:2067–2077

    CAS  PubMed  Google Scholar 

  • Vousden KH (2000) p53: Death Star. Cell 103:691–694

    Article  CAS  PubMed  Google Scholar 

  • Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS (1996) Evidence for p53-mediated modulation of neuronal viability. J Neurosci 16:6753–6765

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from Epilepsy Foundation to J.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Tucholski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucholski, J. TG2 protects neuroblastoma cells against DNA-damage-induced stress, suppresses p53 activation. Amino Acids 39, 523–532 (2010). https://doi.org/10.1007/s00726-009-0468-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0468-8

Keywords

Navigation