Skip to main content
Log in

Profiling of residue-level photo-oxidative damage in peptides

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Protein and peptide oxidation is a key feature in the progression of a variety of disease states and in the poor performance of protein-based products. The present work demonstrates a mass spectrometry-based approach to profiling degradation at the amino acid residue level. Synthetic peptides containing the photosensitive residues, tryptophan and tyrosine, were used as models for protein-bound residue photodegradation. Electrospray ionisation tandem mass spectrometry (ESI-MS/MS) was utilised to characterise and provide relative quantitative information on the formation of photoproducts localised to specific residues, including the characterisation of low abundance photomodifications not previously reported, including W + 4O modification, hydroxy-bis-tryptophandione and topaquinone. Other photoproducts observed were consistent with the formation of tyrosine-derived dihydroxyphenylalanine (dopa), trihydroxyphenylalanine, dopa-quinone and nitrotyrosine, and tryptophan-derived hydroxytryptophan, dihydroxytryptophan/N-formylkynurenine, kynurenine, hydroxyformylkynurenine, tryptophandiones, tetrahydro-β-carboline and nitrotryptophan. This approach combined product identification and abundance tracking to generate a photodegradation profile of the model system. The profile of products formed yields information on formative mechanisms. Profiling of product formation offers new routes to identify damage markers for use in tracking and controlling oxidative damage to polypeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abello N, Kerstjens HAM, Postma DS, Bischoff R (2009) Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration and proteomics methods for the identification of tyrosine-nitrated proteins. J Proteome Res 8:3222–3238

    Article  CAS  PubMed  Google Scholar 

  • Alvarez B, Rubbo H, Kirk M, Barnes S, Freeman BA, Radi R (1996) Peroxynitrite-dependant tryptophan nitration. Chem Res Toxicol 9:390–396

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian D, Du X, Zigler JS (1990) The reaction of singlet oxygen with proteins, with special reference to crystallins. Photochem Photobiol 52:761–768

    Article  CAS  PubMed  Google Scholar 

  • Batthyány C, Santos CXC, Botti H, Cerveñansky C, Radi R, Augusto O, Rubbo H (2000) Direct evidence for apo B-100-mediated copper reduction: studies with purified apo B-100 and detection of tryptophanyl radicals. Arch Biochem Biophys 384:335–340

    Article  PubMed  Google Scholar 

  • Beckles Y, Diyamandoglu V (2006) The impact of ammonia photo-oxidation under UV light from low pressure mercury lamps on bromate decay in water. Water Pract Technol 1. doi:10.2166/wpt.2006.0090

  • Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316

    Article  CAS  PubMed  Google Scholar 

  • Bienvenut WV, Deon C, Pasquarello C, Campbell JM, Sanchez JC, Vestal ML, Hochstrasser DF (2002) Matrix-assisted laser desorption/ionization-tandem mass spectrometry with high resolution and sensitivity for identification and characterization of proteins. Proteomics 2:868–876

    Article  CAS  PubMed  Google Scholar 

  • Bringans SD, Dyer JM, Plowman JE, Bryson WG (2006) Kynurenine located within proteins isolated from photoyellowed wool fabric. Text Res J 76:288–294

    Article  CAS  Google Scholar 

  • Canovas FG, Garcia-Carmona F, Sanchez JV, Pastor JL, Teruel JA (1982) The role of pH in the melanin biosynthesis pathway. J Biol Chem 257:8738–8744

    CAS  PubMed  Google Scholar 

  • Chowdhury SK, Katta V, Chait BT (1990) Electrospray ionization mass spectrometric peptide mapping: a rapid, sensitive technique for protein structure analysis. Biochem Biophys Res Commun 167:686–692

    Article  CAS  PubMed  Google Scholar 

  • Dalsgaard TK, Otzen D, Nielsen J, Larsen LB (2007) Changes in structures of milk proteins upon photooxidation. J Agric Food Chem 55:10968–10976

    Article  CAS  PubMed  Google Scholar 

  • Davidson RS (1996) The photodegradation of some naturally occurring polymers. J Photochem Photobiol B 33:3–25

    Article  CAS  Google Scholar 

  • Davies MJ (2003) Singlet oxygen-mediated damage to proteins and its consequences. Biochem Biophys Res Commun 305:761–770

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ (2004) Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 3:17–25

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ, Truscott RJW (2001) Photo-oxidation of proteins and its role in cataractogenesis. J Photochem Photobiol B 63:114–125

    Article  CAS  PubMed  Google Scholar 

  • Davies MJ, Fu S, Wang H, Dean RT (1999) Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic Biol Med 27:1151–1163

    Article  CAS  PubMed  Google Scholar 

  • Dean RT, Gieseg S, Davies MJ (1993) Reactive species and their accumulation on radical-damaged proteins. Trends Biochem Sci 18:437–441

    Article  CAS  PubMed  Google Scholar 

  • Dillon J, Spector A, Nakanishi K (1976) Identification of β-carbolines isolated from fluorescent human lens proteins. Nature 259:422–423

    Article  CAS  PubMed  Google Scholar 

  • Domingues MR, Domingues P, Reis A, Fonseca C, Amado FM, Ferrer-Correia AJ (2003) Identification of oxidation products and free radicals of tryptophan by mass spectrometry. J Am Soc Mass Spectrom 14:406–416

    Article  CAS  PubMed  Google Scholar 

  • Dyer JM, Bringans SD, Plowman JE, Bryson WG (2005) Chromophores in photoyellowed wool fabric characterised by mass spectrometry. In: Proceedings of the 11th international wool research conference, Leeds, p 98FWSA

  • Dyer JM, Bringans S, Bryson WG (2006a) Characterisation of photo-oxidation products within photoyellowed wool proteins: tryptophan and tyrosine derived chromophores. Photochem Photobiol Sci 5:698–706

    Article  CAS  PubMed  Google Scholar 

  • Dyer JM, Bringans SD, Bryson WG (2006b) Determination of photo-oxidation products within photoyellowed bleached wool proteins. Photochem Photobiol 82:551–557

    Article  CAS  PubMed  Google Scholar 

  • Dyer JM, Clerens S, Cornellison CD, Murphy CJ, Maurdev G, Millington KR (2009) Photoproducts formed in the photoyellowing of collagen in the presence of a fluorescent whitening agent. Photochem Photobiol 85:1314–1321

    Article  CAS  PubMed  Google Scholar 

  • Ehrenshaft M, de Oliveira Silva S, Perdivara I, Bilski P, Sik RH, Chignell CF, Tomer KB, Mason RP (2009) Immunological detection of N-formylkynurenine in oxidized proteins. Free Radic Biol Med 46:1260–1266

    Article  CAS  PubMed  Google Scholar 

  • Finley EL, Dillon J, Crouch RK, Schey KL (1998) Identification of tryptophan oxidation products in bovine α-crystallin. Protein Sci 7:2391–2397

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Davies MJ, Stocker R, Dean RT (1998) Evidence for roles of radicals in protein oxidation in advanced human atherosclerotic plaque. Biochem J 333:519–525

    CAS  PubMed  Google Scholar 

  • Gieseg S, Simpson JA, Charlton TS, Duncan MW, Dean RT (1993) Protein-bound 3, 4-dihydroxyphenylalanine is a major reductant formed during hydroxyl radical damage to proteins. Biochemistry 32:4780–4786

    Article  CAS  PubMed  Google Scholar 

  • Girotti AW, Giacomoni PU (2007) Lipid and protein damage provoked by ultraviolet radiation: mechanisms of indirect photooxidative damage. In: Giacomoni PU (ed) Biophysical and physiological effects of solar radiation on human skin. RSC Publishing, Cambridge, pp 271–291

    Chapter  Google Scholar 

  • Goddinger D, Schäfer K, Hocker H (1994) Phenylalanine and tyrosine—two aromatic amino acids involved in the photoyellowing of wool. Wool Technol Sheep Breed 42:83–89

    Google Scholar 

  • Gracanin M, Hawkins CL, Pattison DI, Davies MJ (2009) Singlet-oxygen-mediated amino acid and protein oxidation: formation of tryptophan peroxides and decomposition products. Free Radic Biol Med 47:92–102

    Article  CAS  PubMed  Google Scholar 

  • Grossweiner LI (1984) Photochemistry of proteins: a review. Curr Eye Res 3:137–144

    Article  CAS  PubMed  Google Scholar 

  • Guptasarma P, Balasubramaniam D, Matsugo S, Saito I (1992) Hydroxyl radical mediated damage to proteins, with special reference to the crystallins. Biochemistry 31:4296–4303

    Article  CAS  PubMed  Google Scholar 

  • Hains PG, Truscott RJW (2007) Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J Proteome Res 6:3935–3943

    Article  CAS  PubMed  Google Scholar 

  • Hara I, Ueno T, Ozaki S, Itoh S, Lee K, Ueyama N, Watanabe Y (2001) Oxidative modification of tryptophan 43 in the heme vicinity of the F43W/H64L myoglobin mutant. J Biol Chem 276:36067–36070

    Article  CAS  PubMed  Google Scholar 

  • Hyun Y-L, Davidson VL (2002) Mechanistic studies of aromatic amine dehydrogenase, a tryptophan tryptophylquinone enzyme. Biochemistry 34:816–823

    Article  Google Scholar 

  • Igarashi N, Onoue S, Tsuda Y (2007) Photoreactivity of amino acids: tryptophan-induced photochemical events via reactive oxygen species generation. Anal Sci 23:943–948

    Article  CAS  PubMed  Google Scholar 

  • Inglis AS, Lennox FG (1963) Studies in wool yellowing. Part IV: changes in amino acid composition due to irradiation. Text Res J 33:431–434

    CAS  Google Scholar 

  • Ischiropoulos H, Al-Mehdi AB (1995) Peroxynitrite-mediated oxidative protein modifications. FEBS Lett 364:279–282

    Article  CAS  PubMed  Google Scholar 

  • Kato Y, Uchida K, Kawakishi S (1992) Oxidative degradation of collagen and its model peptide by ultraviolet irradiation. J Agric Food Chem 40:373–379

    Article  CAS  Google Scholar 

  • Kerwin BA, Remmele RLJ (2007) Protect from light: photodegradation and protein biologics. J Pharm Sci 96:1468–1479

    Article  CAS  PubMed  Google Scholar 

  • King RR, Lawrence CH (1995) 4-Nitrotryptophans associated with the in vitro production of thaxtomin A by Streptomyces scabies. Phytochemistry 40:41–43

    Article  CAS  Google Scholar 

  • Klarskov K, Johnson KL, Benson LM, Cragun JD, Gleich GJ, Wrona M, Jiang X-R, Dryhurst G, Naylor S (2003) Structural characterization of a case-implicated contaminant, “Peak X” in commercial preparations of 5-hydroxytryptophan. J Rheumatol 30:89–95

    CAS  PubMed  Google Scholar 

  • Kotiaho T, Eberlin MN, Vainiotalo P, Kostiainen R (2000) Electrospray mass and tandem mass spectrometry identification of ozone oxidation products of amino acids and small peptides. J Am Soc Mass Spectrom 11:526–535

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Koo N, Min DB (2004) Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr Rev Food Sci Food Saf 3:21–33

    Article  CAS  Google Scholar 

  • Lennox FG, Inglis AS, Holt LA (1966) Studies in wool yellowing. Part XIII: partial bleaching with visible light. Text Res J 36:837–843

    Article  CAS  Google Scholar 

  • Linton S, Davies MJ, Dean RT (2001) Protein oxidation and ageing. Exp Gerontol 36:1503–1518

    Article  CAS  PubMed  Google Scholar 

  • Lippke KP, Schunack WG, Wenning W, Mueller WE (1983) β-carbolines as benzodiazepine receptor ligands. 1. Synthesis and benzodiazepine receptor interaction of esters of β-carboline-3-carboxylic acid. J Med Chem 26:499–503

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Bottari P, Turecek F, Aebersold R, Gelb MH (2004) Absolute quantification of specific proteins in complex mixtures using visible isotope-coded affinity tags. Anal Chem 76:4104–4111

    Article  CAS  PubMed  Google Scholar 

  • Luzchem (2004a) Technical release: Luzchem exposure standard: LES-UVA-01. Available at: http://www.luzchem.com/handbook/LESUVA011.pdf

  • Luzchem (2004b) Technical release: Luzchem exposure standard: LES-UVB-01. Available at: http://www.luzchem.com/handbook/LESUVB011.pdf

  • Mann M (1999) Quantitative proteomics? Nat Biotechnol 17:954–955

    Article  CAS  PubMed  Google Scholar 

  • Maskos J, Rush JD, Koppenol WH (1992) The hydroxylation of tryptophan. Arch Biochem Biophys 296:514–520

    Article  CAS  PubMed  Google Scholar 

  • Metz B, Kersten GFA, Hoogerhout P, Brugghe HF, Timmermans HAM, de Jong A, Meiring H, Jt Hove, Hennink WE, Crommelin DJA, Jiskoot W (2004) Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem 279:6235–6243

    Article  CAS  PubMed  Google Scholar 

  • Meybeck J, Meybeck A (1965) La determination de cetoacides dans les hydrolysats de laines degradees. Contribution a l’etude des mecanismes d’oxydation de la liaison peptidique. In: Proceedings of the international wool textile research conference. Paris, pp 525–533

  • Mizdrak J, Hains PG, Truscott RJW, Jamie JF, Davies MJ (2008) Tryptophan-derived ultraviolet filter compounds covalently bound to lens proteins are photosensitizers of oxidative damage. Free Radic Biol Med 44:1108–1119

    Article  CAS  PubMed  Google Scholar 

  • Møller JKS, Bertelsen G, Skibsted LH (2002) Photooxidation of nitrosylmyoglobin at low oxygen pressure. Quantum yields and reaction stoechiometries. Meat Sci 60:421–425

    Article  Google Scholar 

  • Nakagawa M, Yokoyama Y, Kato S, Hino T (1985) Dye-sensitized photo-oxygenation of tryptophan. Tetrahedron 41:2125–2132

    Article  CAS  Google Scholar 

  • Nappi A, Vass E, Prota G, Memoli S (1995) The effects of hydroxyl radical attack on dopa, dopamine, 6-hydroxydopa, and 6-hydroxydopamine. Pigment Cell Res 8:283–293

    Article  CAS  PubMed  Google Scholar 

  • Ogata N (2007) Denaturation of protein by chlorine dioxide: oxidative modification of tryptophan and tyrosine residues. Biochemistry 46:4898–4911

    Article  CAS  PubMed  Google Scholar 

  • Ozaki S, Hara I, Matsui T, Watanabe Y (2001) Molecular engineering of myoglobin: the improvement of oxidation activity by replacing Phe-43 with tryptophan. Biochemistry 40:1044–1052

    Article  CAS  PubMed  Google Scholar 

  • Parker NR, Jamie JF, Davies MJ, Truscott RJW (2004) Protein-bound kynurenine is a photosensitizer of oxidative damage. Free Radic Biol Med 37:1479–1489

    Article  CAS  PubMed  Google Scholar 

  • Pfister TD, Ohki T, Ueno T, Hara I, Adachi S, Makino Y, Ueyama N, Lu Y, Watanabe Y (2005) Monooxygenation of an aromatic ring by F43W/H64D/V68I myoglobin mutant and hydrogen peroxide: myoglobin mutants as a model for P450 hydroxylation chemistry. J Biol Chem 280:12858–12866

    Article  CAS  PubMed  Google Scholar 

  • Plumb RC, Edwards J (1992) Color centers in UV-irradiated nitrates. J Phys Chem 96:3245–3247

    Article  CAS  Google Scholar 

  • Rescigno A, Rinaldi AC, Sanjust E (1998) Some aspects of tyrosine secondary metabolism. Biochem Pharmacol 56:1089–1096

    Article  CAS  PubMed  Google Scholar 

  • Reubsaet JLE, Beijnen JH, Bult A, van Maanen RJ, Marchal JAD, Underberg WJM (1998) Analytical techniques used to study the degradation of proteins and peptides: chemical instability. J Pharm Biomed Anal 17:955–978

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg PA, Loring R, Xie Y, Zaleskas V, Aizenman E (1991) 2, 4, 5-trihydroxyphenylalanine in solution forms a non-N-methyl-d-aspartate glutamatergic agonist and neurotoxin. Proc Natl Acad Sci USA 88:4865–4869

    Article  CAS  PubMed  Google Scholar 

  • Schäfer K, Goddinger D, Höcker H (1997) Photodegradation of tryptophan in wool. J Soc Dyers Colour 133:350–355

    Google Scholar 

  • Schey KL, Patat S, Chignell CF, Datillo M, Wang RH, Roberts JE (2000) Photooxidation of lens alpha-crystallin by hypericin (active ingredient in St. John’s Wort). Photochem Photobiol 72:200–203

    Article  CAS  PubMed  Google Scholar 

  • Shacter E (2000) Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 32:307–326

    Article  CAS  PubMed  Google Scholar 

  • Simat TJ, Steinhart H (1998) Oxidation of free tryptophan and tryptophan residues in peptides and proteins. J Agric Food Chem 46:490–498

    Article  CAS  PubMed  Google Scholar 

  • Tokuyama T, Senoh IS, Sakan T, Brown KSJ, Witkop B (1967) The photoreduction of kynurenic acid to kynurenine yellow and the occurrence of 3-hydroxy-l-kynurenine in butterflies. J Am Chem Soc 89:1017–1021

    Article  CAS  PubMed  Google Scholar 

  • Van de Weert M, Lagerwerf FM, Haverkamp J, Heerma W (1998) Mass spectrometric analysis of oxidized tryptophan. J Mass Spectrom 33:884–891

    Article  Google Scholar 

  • Wells-Knecht MC, Huggins TG, Dyer DG, Thorpe SR, Baynes JW (1993) Oxidized amino acids in lens protein with age. Measurement of o- tyrosine and dityrosine in the aging human lens. J Biol Chem 268:12348–12352

    CAS  PubMed  Google Scholar 

  • Wilce MCJ, Dooley DM, Freeman HC, Guss JM, Matsunami H, McIntire WS, Ruggiero CE, Tanizawa K, Yamaguchi H (1997) Crystal structures of the copper-containing amine oxidase from Arthrobacter globiformis in the holo and apo forms: implications for the biogenesis of topaquinone. Biochemistry 36:16116–16133

    Article  CAS  PubMed  Google Scholar 

  • Wright A, Bubb WA, Hawkins CL, Davies MJ (2002) Singlet oxygen-mediated protein oxidation: evidence for the formation of reactive side chain peroxides on tyrosine residues. Photochem Photobiol 76:35–46

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Dryhurst G (1996) 7-S-Glutathionyltryptophan-4, 5-dione: formation from 5-hydroxytryptophan and reactions with glutathione. Bioorg Chem 24:127–149

    Article  CAS  Google Scholar 

  • Yamakura F, Matsumoto T, Fujimura T, Taka H, Murayama K, Imai T, Uchida K (2001) Modification of a single tryptophan residue in human Cu, Zn-superoxide dismutase by peroxynitrite in the presence of bicarbonate. Biochim Biophys Acta Protein Struct Mol Enzymol 1548:38–46

    Article  CAS  Google Scholar 

  • Yamakura F, Matsumoto T, Ikeda K, Taka H, Fujimura T, Murayama K, Watanabe E, Tamaki M, Imai T, Takamori K (2005) Nitrated and oxidized products of a single tryptophan residue in human Cu, Zn-superoxide dismutase treated with either peroxynitrite-carbon dioxide or myeloperoxidase-hydrogen peroxide-nitrite. J Biochem 138:57–69

    Article  CAS  PubMed  Google Scholar 

  • Zheng GY, Davies JA, Edwards JG (1998) Photooxidation of ammonia in aqueous basic solutions. Rec Res Dev Phys Chem 2:1011–1027

    CAS  Google Scholar 

Download references

Acknowledgements

The present study was supported through a Wool Research Organisation of New Zealand Inc. and New Zealand Wool Industry Charitable Trust Post-Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolon M. Dyer.

Glossary

ESI-MS

electrospray ionisation mass spectrometry

MS/MS

tandem mass spectrometry

NFK

N-formylkynurenine

ROS

reactive oxygen species

RNS

reactive nitrogen species

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grosvenor, A.J., Morton, J.D. & Dyer, J.M. Profiling of residue-level photo-oxidative damage in peptides. Amino Acids 39, 285–296 (2010). https://doi.org/10.1007/s00726-009-0440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-009-0440-7

Keywords

Navigation