Skip to main content
Log in

Effects of α-ketoglutarate on neutrophil intracellular amino and α-keto acid profiles and ROS production

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The aim of this study was to determine the effects of α-ketoglutarate on neutrophil (PMN), free α-keto and amino-acid profiles as well as important reactive oxygen species (ROS) produced [superoxide anion (O2 ), hydrogen peroxide (H2O2)] and released myeloperoxidase (MPO) acitivity. Exogenous α-ketoglutarate significantly increased PMN α-ketoglutarate, pyruvate, asparagine, glutamine, asparatate, glutamate, arginine, citrulline, alanine, glycine and serine in a dose as well as duration of exposure dependent manner. Additionally, in parallel with intracellular α-ketoglutarate changes, increases in O2 formation, H2O2-generation and MPO acitivity have also been observed. We therefore believe that α-ketoglutarate is important for affecting PMN “susceptible free amino- and α-keto acid pools” although important mechanisms and backgrounds are not yet completely explored. Moreover, our results also show very clearly that changes in intragranulocytic α-ketoglutarate levels are relevant metabolic determinants in PMN nutrition considerably influencing and modulating the magnitude and quality of the granulocytic host defense capability as well as production of ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agam G, Gutman A (1972) Synthesis of glycogen in leucocytes from various precursors. Rev Eur Etud Clin Biol 17:650–656

    CAS  PubMed  Google Scholar 

  • Alpers DH (2006) Glutamine: do the data support the cause for glutamine supplementation in humans? Gastroenterology 130:S106–S116. doi:10.1053/j.gastro.2005.11.049

    Article  CAS  PubMed  Google Scholar 

  • Board M, Humm S, Newsholme EA (1990) Maximum activities of key enzymes of glycolysis, glutaminolysis, pentose phosphate pathway and tricarboxylic acid cycle in normal, neoplastic and suppressed cells. Biochem J 265:503–509

    CAS  PubMed  Google Scholar 

  • Bracco D (2005) Glutamine: a double edge sword in the intensive care unit? Crit Care Med 33:2692–2694. doi:10.1097/01.CCM.0000186750.06199.0F

    Article  PubMed  Google Scholar 

  • Brandon WJ (2004) Clinical controversies: the role of glutamine counterpoint. Nutr Clin Pract 19:312. doi:10.1177/0115426504019003312

    Article  PubMed  Google Scholar 

  • Brown AC, Macrae HS, Turner NS (2004) Tricarboxylic-acid-cycle intermediates and cycle endurance capacity. Int J Sport Nutr Exerc Metab 14:720–729

    CAS  PubMed  Google Scholar 

  • Burckhardt BC, Burckhardt G (2003) Transport of organic anions across the basolateral membrane of proximal tubule cells. Rev Physiol Biochem Pharmacol 146:95–158. doi:10.1007/s10254-002-0003-8

    Article  CAS  PubMed  Google Scholar 

  • Burg ND, Pillinger MH (2001) The neutrophil: function and regulation in innate and humoral immunity. Clin Immunol 99:7–17. doi:10.1006/clim.2001.5007

    Article  CAS  PubMed  Google Scholar 

  • Calder PC (2003) Immunonutrition. BMJ 327:117–118. doi:10.1136/bmj.327.7407.117

    Article  PubMed  Google Scholar 

  • Castell L, Vance C, Abbott R et al (2004) Granule localization of glutaminase in human neutrophils and the consequence of glutamine utilization for neutrophil activity. J Biol Chem 279:13305–13310. doi:10.1074/jbc.M309520200

    Article  CAS  PubMed  Google Scholar 

  • Chen XZ, Shayakul C, Berger UV et al (1998) Characterization of a rat Na+-dicarboxylate cotransporter. J Biol Chem 273:20972–20981. doi:10.1074/jbc.273.33.20972

    Article  CAS  PubMed  Google Scholar 

  • Curi R, Newsholme P, Newsholme EA (1986) Intracellular distribution of some enzymes of the glutamine utilisation pathway in rat lymphocytes. Biochem Biophys Res Commun 138:318–322. doi:10.1016/0006-291X(86)90282-2

    Article  CAS  PubMed  Google Scholar 

  • Curi R, Newsholme P, Newsholme EA (1988) Metabolism of pyruvate by isolated rat mesenteric lymphocytes, lymphocyte mitochondria and isolated mouse macrophages. Biochem J 250:383–388

    CAS  PubMed  Google Scholar 

  • Curi TC, De Melo MP, De Azevedo RB et al (1997a) Glutamine utilization by rat neutrophils. Biochem Soc Trans 25:249S

    CAS  PubMed  Google Scholar 

  • Curi TC, De Melo MP, De Azevedo RB et al (1997b) Glutamine utilization by rat neutrophils: presence of phosphate-dependent glutaminase. Am J Physiol 273:C1124–C1129

    CAS  PubMed  Google Scholar 

  • Cynober LA (1999) The use of alpha-ketoglutarate salts in clinical nutrition and metabolic care. Curr Opin Clin Nutr Metab Care 2:33–37. doi:10.1097/00075197-199901000-00007

    Article  CAS  PubMed  Google Scholar 

  • Cynober LA (2002) Goodbye sodium alpha-ketoglutarate? Nutrition 18:772–773. doi:10.1016/S0899-9007(02)00901-2

    Article  PubMed  Google Scholar 

  • Cynober L, Coudray-Lucas C, De Bandt JP et al (1990) Action of ornithine alpha-ketoglutarate, ornithine hydrochloride, and calcium alpha-ketoglutarate on plasma amino acid and hormonal patterns in healthy subjects. J Am Coll Nutr 9:2–12

    CAS  PubMed  Google Scholar 

  • Cynober L, Lasnier E, Le Boucher J et al (2007) Effect of ornithine alpha-ketoglutarate on glutamine pools in burn injury: evidence of component interaction. Intensive Care Med 33:538–541. doi:10.1007/s00134-006-0511-0

    Article  CAS  PubMed  Google Scholar 

  • Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232:3–14. doi:10.1016/S0022-1759(99)00146-5

    Article  CAS  PubMed  Google Scholar 

  • Das S, Kar Mahapatra S, Gautam N et al (2007) Oxidative stress in lymphocytes, neutrophils, and serum of oral cavity cancer patients: modulatory array of l-glutamine. Support Care Cancer 15:1399–1405. doi:10.1007/s00520-007-0266-3

    Article  PubMed  Google Scholar 

  • Dechelotte P, Hasselmann M, Cynober L et al (2006) l-alanyl-l-glutamine dipeptide-supplemented total parenteral nutrition reduces infectious complications and glucose intolerance in critically ill patients: the French controlled, randomized, double-blind, multicenter study. Crit Care Med 34:598–604. doi:10.1097/01.CCM.0000201004.30750.D1

    Article  CAS  PubMed  Google Scholar 

  • Dhaliwal R, Heyland DK (2005) Nutrition and infection in the intensive care unit: what does the evidence show? Curr Opin Crit Care 11:461–467

    PubMed  Google Scholar 

  • Engel JM, Ruhs S, Mühling J et al (2008) Perioperative application of l: -alanyl-l: -glutamine in cardiac surgery: effect on the polarized T cell cytokine expression. Amino Acids PMID: 18563517

  • Fauth U, Heinrichs W, Puente-Gonzalez I et al (1990) Maximale Umsatzraten an Enzymen der Glykolyse und des Zitratzyklus von separierten Granulozyten in der postoperativen Phase (maximal turnover rates of glycolysis enzymes and of the citrate cycle of separated granulocytes in the postoperative period). Infusionstherapie 17:178–183

    Google Scholar 

  • Fauth U, Schlechtriemen T, Heinrichs W et al (1993) The measurement of enzyme activities in the resting human polymorphonuclear leukocyte––critical estimate of a method. Eur J Clin Chem Clin Biochem 31:5–16

    CAS  PubMed  Google Scholar 

  • Frei J, Aellig A, Nessi P (1975) Enzyme system and coenzymes involved in the energy metabolism of leukocytes. Function and metabolism of polymorphonuclear neutrophils. Ann Biol Clin (Paris) 33:459–464

    Google Scholar 

  • Grimble RF (2001) Nutritional modulation of immune function. Proc Nutr Soc 60:389–397. doi:10.1079/PNS2001102

    Article  CAS  PubMed  Google Scholar 

  • Hausinger RP (2004) FeII/alpha-ketoglutarate-dependent hydroxylases and related enzymes. Crit Rev Biochem Mol Biol 39:21–68. doi:10.1080/10409230490440541

    Article  CAS  PubMed  Google Scholar 

  • Johnson IR, Ball RO, Baracos VE et al (2006) Glutamine supplementation influences immune development in the newly weaned piglet. Dev Comp Immunol 30:1191–1202. doi:10.1016/j.dci.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  • Kirk HJ, Heys SD (2003) Immunonutrition. Br J Surg 90:1459–1460. doi:10.1002/bjs.4368

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Tsunawaki S, Seguchi H (2001) Evaluation of the process for superoxide production by NADPH oxidase in human neutrophils: evidence for cytoplasmic origin of superoxide. Redox Rep 6:27–36. doi:10.1179/135100001101536003

    Article  CAS  PubMed  Google Scholar 

  • Lagranha CJ, Levada-Pires AC, Sellitti DF et al (2008a) The effect of glutamine supplementation and physical exercise on neutrophil function. Amino Acids 34:337–346. doi:10.1007/s00726-007-0560-x

    Article  CAS  PubMed  Google Scholar 

  • Lagranha CJ, Alba-Loureiro TC, Martins EF et al (2008b) Neutrophil fatty acid composition: effect of a single session of exercise and glutamine supplementation. Amino Acids 35:243–245. doi:10.1007/s00726-007-0561-9

    Article  CAS  PubMed  Google Scholar 

  • Law D, Hering-Smith KS, Hamm LL (1992) Citrate transport in proximal cell line. Am J Physiol 263:C220–C225

    CAS  PubMed  Google Scholar 

  • Li P, Yin YL, Li D et al (2007) Amino acids and immune function. Br J Nutr 98:237–252. doi:10.1017/S000711450769936X

    Article  CAS  PubMed  Google Scholar 

  • Loi C, Nakib S, Neveux N et al (2005) Ornithine alpha-ketoglutarate metabolism in the healthy rat in the postabsorptive state. Metabolism 54:1108–1114. doi:10.1016/j.metabol.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  • Loi C, Hamani D, Moinard C et al (2007) Does the ornithine-alpha-ketoglutarate ratio influence ornithine alpha-ketoglutarate metabolism in healthy rats? Metabolism 56:105–114. doi:10.1016/j.metabol.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  • Matés JM, Segura JA, Alonso FJ et al (2006) Pathways from glutamine to apoptosis. Front Biosci 11:3164–3180. doi:10.2741/2040

    Article  PubMed  Google Scholar 

  • Matés JM, Segura JA, Alonso FJ et al (2008) Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 82:273–299. doi:10.1007/s00204-008-0304-z

    Article  PubMed  Google Scholar 

  • Mitzkat HJ, Wiegrefe K, Meyer U (1972) Enzyme patterns of the energy-linked metabolism in blood cells of human diabetics. Horm Metab Res 4:107–110

    Article  CAS  PubMed  Google Scholar 

  • Mizuho F, Mori H, Deguchi S et al (1996) Aspartate aminotransferase (AST) levels in human periodontium-derived cells. J Periodontol 67:733–736

    CAS  PubMed  Google Scholar 

  • Moinard C, Chauveau B, Walrand S et al (1999) Phagocyte functions in stressed rats: comparison of modulation by glutamine, arginine and ornithine 2-oxoglutarate. Clin Sci (Lond) 97:59–65. doi:10.1042/CS19980418

    Article  CAS  Google Scholar 

  • Moinard C, Caldefie F, Walrand S et al (2000) Involvement of glutamine, arginine, and polyamines in the action of ornithine alpha-ketoglutarate on macrophage functions in stressed rats. J Leukoc Biol 67:834–840

    CAS  PubMed  Google Scholar 

  • Moinard C, Caldefie F, Walrand S et al (2002) Effects of ornithine 2-oxoglutarate on neutrophils in stressed rats: evidence for the involvement of nitric oxide and polyamines. Clin Sci (Lond) 102:287–295. doi:10.1042/CS20010162

    Article  CAS  Google Scholar 

  • Moreira A, Kekkonen RA, Delgado L et al (2007) Nutritional modulation of exercise-induced immunodepression in athletes: a systematic review and meta-analysis. Eur J Clin Nutr 61:443–460. doi:10.1038/sj.ejcn.1602752

    Article  CAS  PubMed  Google Scholar 

  • Mühling J, Fuchs M, Dehne MG et al (1999) Quantitative determination of free intracellular amino acids in single human polymorphonuclear leucocytes. Recent developments in sample preparation and high-performance liquid chromatography. J Chromatogr B Biomed Sci Appl 728:157–166. doi:10.1016/S0378-4347(99)00114-0

    Article  PubMed  Google Scholar 

  • Mühling J, Fuchs M, Sablotzki A et al (2002) Effects of arginine, l-alanyl-l-glutamine or taurine on neutrophil (PMN) free amino acid profiles and immune functions in vitro. Amino Acids 22:39–53. doi:10.1007/s726-002-8200-9

    Article  PubMed  Google Scholar 

  • Mühling J, Fuchs M, Campos ME et al (2003) Quantitative determination of free intracellular alpha-keto acids in neutrophils. J Chromatogr B Analyt Technol Biomed Life Sci 789:383–392. doi:10.1016/S1570-0232(03)00163-6

    Article  PubMed  Google Scholar 

  • Mühling J, Nickolaus KA, Halabi M et al (2005) Alterations in neutrophil (PMN) free intracellular alpha-keto acid profiles and immune functions induced by l-alanyl-l-glutamine, arginine or taurine. Amino Acids 29:289–300. doi:10.1007/s00726-005-0223-8

    Article  PubMed  Google Scholar 

  • Mühling J, Burchert D, Langefeld TW et al (2006a) Pathways involved in alanyl-glutamine-induced changes in neutrophil amino- and alpha-keto acid homeostasis or immunocompetence. Amino Acids 33:511–524. doi:10.1007/s00726-006-0395-x

    Article  PubMed  Google Scholar 

  • Mühling J, Engel J, Halabi M et al (2006b) Nitric oxide and polyamine pathway-dependent modulation of neutrophil free amino- and alpha-keto acid profiles or host defense capability. Amino Acids 31:11–26. doi:10.1007/s00726-006-0273-6

    Article  PubMed  Google Scholar 

  • Newsholme EA (1994) Biochemical control logic and the metabolism of glutamine. Nutrition 10:178–179

    CAS  PubMed  Google Scholar 

  • Newsholme P (2001) Why is l-glutamine metabolism important to cells of the immune system in health, postinjury, surgery or infection? J Nutr 131:2515S–2522S

    CAS  PubMed  Google Scholar 

  • Newsholme P, Lima MM, Procopio J et al (2003a) Glutamine and glutamate as vital metabolites. Braz J Med Biol Res 36:153–163. doi:10.1590/S0100-879X2003000200002

    Article  CAS  PubMed  Google Scholar 

  • Newsholme P, Procopio J, Lima MM et al (2003b) Glutamine and glutamate-their central role in cell metabolism and function. Cell Biochem Funct 21:1–9. doi:10.1002/cbf.1003

    Article  CAS  PubMed  Google Scholar 

  • O’Dowd Y, Newsholme P (1997) Evidence for the involvement of glutamine in nitric oxide (NO) production by immunostimulated neutrophils. Biochem Soc Trans 25:403S

    PubMed  Google Scholar 

  • Oehler R, Roth E (2003) Regulative capacity of glutamine. Curr Opin Clin Nutr Metab Care 6:277–282. doi:10.1097/00075197-200305000-00002

    Article  CAS  PubMed  Google Scholar 

  • Pajor AM (1999) Sodium-coupled transporters for Krebs cycle intermediates. Annu Rev Physiol 61:663–682. doi:10.1146/annurev.physiol.61.1.663

    Article  CAS  PubMed  Google Scholar 

  • Robinson LE, Bussiere FI, Le Boucher J et al (1999) Amino acid nutrition and immune function in tumour-bearing rats: a comparison of glutamine-, arginine- and ornithine 2-oxoglutarate-supplemented diets. Clin Sci (Lond) 97:657–669. doi:10.1042/CS19990144

    Article  CAS  Google Scholar 

  • Roch-Arveiller M, Tissot M, Coudray-Lucas C (1996) Immunomodulatory effects of ornithine alpha-ketoglutarate in rats with burn injuries. Arch Surg 131:718–723

    CAS  PubMed  Google Scholar 

  • Sheu KF, Blass JP (1999) The alpha-ketoglutarate dehydrogenase complex. Ann NY Acad Sci 893:61–78. doi:10.1111/j.1749-6632.1999.tb07818.x

    Article  CAS  PubMed  Google Scholar 

  • Shi Q, Xu H, Kleinman WA et al (2008) Novel functions of the alpha-ketoglutarate dehydrogenase complex may mediate diverse oxidant-induced changes in mitochondrial enzymes associated with Alzheimer’s disease. Biochim Biophys Acta 1782:229–238

    CAS  PubMed  Google Scholar 

  • Stjernholm RL, Dimitrov NV, Pijanowski LJ (1969) Carbohydrate metabolism in leukocytes. IX. Citric acid cycle activity in human neutrophils. J Reticuloendothel Soc 6:194–201

    CAS  PubMed  Google Scholar 

  • Tan B, Li XG, Kong X et al (2008) Dietary l: -arginine supplementation enhances the immune status in early-weaned piglets. Amino Acids PMID: 18712273

  • Vermeulen MA, van de Poll MC, Ligthart-Melis GC et al (2007) Specific amino acids in the critically ill patient––exogenous glutamine/arginine: a common denominator? Crit Care Med 35:S568–S576. doi:10.1097/01.CCM.0000278600.14265.95

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen L, Li P et al (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138:1025–1032

    CAS  PubMed  Google Scholar 

  • Willems HL, de Kort TF, Trijbels FJ et al (1978) Determination of pyruvate oxidation rate and citric acid cycle activity in intact human leukocytes and fibroblasts. Clin Chem 24:200–203

    CAS  PubMed  Google Scholar 

  • Witko-Sarsat V, Rieu P, Descamps-Latscha B et al (2000) Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 80:617–653

    CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA, Kim SW (2004) Arginine nutrition in neonatal pigs. J Nutr 134:2783S–2790S

    CAS  PubMed  Google Scholar 

  • Yeh CL, Hsu CS, Chen SC et al (2006) Effect of glutamine on cellular adhesion molecule expression and leukocyte transmigration in endothelial cells stimulated by plasma or peritoneal drain fluid from a surgical patient. Shock 25:236–240. doi:10.1097/01.shk.0000192120.45425.54

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Mühling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühling, J., Tussing, F., Nickolaus, K.A. et al. Effects of α-ketoglutarate on neutrophil intracellular amino and α-keto acid profiles and ROS production. Amino Acids 38, 167–177 (2010). https://doi.org/10.1007/s00726-008-0224-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0224-5

Keywords

Navigation