Skip to main content

Advertisement

Log in

Application of protein grey incidence degree measure to predict protein quaternary structural types

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Many proteins are composed of two or more subunits, each associated with different polypeptide chains. The number and arrangement of subunits forming a protein are referred to as quaternary structure. It has been known for long that the functions of proteins are closely related to their quaternary structure. In this paper the grey incidence degree is introduced that can calculate the numerical relation between various components, expressed the similar or different degree between these components. We have demonstrated that introduction of the grey incidence degree can remarkably enhance the success rates in predicting the protein quaternary structural class. It is anticipated that the grey incidence degree can be also used to predict many other protein attributes, such as subcellular localization, membrane protein type, enzyme functional class, GPCR type, protease type, among many others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Altschul SF (1997) Evaluating the statistical significance of multiple distinct local alignments. In: Suhai S (ed) Theoretical and computational methods in genome research. Plenum, New York, pp 1–14

    Google Scholar 

  • Andraos J (2008) Kinetic plasticity and the determination of product ratios for kinetic schemes leading to multiple products without rate laws: new methods based on directed graphs. Can J Chem 86:342–357

    Article  CAS  Google Scholar 

  • Carugo O (2007) Applied Crystallography 40:986–989

    Google Scholar 

  • Chen Z, Alcayaga C, Suarez-Isla BA, O’Rourke B, Tomaselli G, Marban E (2002) A “minimal” sodium channel construct consisting of ligated S5-P-S6 segments forms a toxin-activatable ionophore. J Biol Chem 277:24653–24658

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1981) Two new schematic rules for rate laws of enzyme-catalyzed reactions. J Theor Biol 89:581–592

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1988) Review: low-frequency collective motion in biomacromolecules and its biological functions. Biophys Chem 30:3–48

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1989) Graphical rules in steady and non-steady enzyme kinetics. J Biol Chem 264:12074–12079

    PubMed  CAS  Google Scholar 

  • Chou KC (1990) Review: applications of graph theory to enzyme kinetics and protein folding kinetics. Steady and non-steady state systems. Biophys Chem 35:1–24

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1992) Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol 223:509–517

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1993) A vectorized sequence-coupling model for predicting HIV protease cleavage sites in proteins. J Biol Chem 268:16938–16948

    PubMed  CAS  Google Scholar 

  • Chou KC (1995) A novel approach to predicting protein structural classes in a (20-1)-d amino acid composition space. Proteins Struct Funct Genet 21:319–344

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1996) Review: prediction of HIV protease cleavage sites in proteins. Anal Biochem 233:1–14

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2000) Review: prediction of protein structural classes and subcellular locations. Curr Protein Pept Sci 1:171–208

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2001) Prediction of protein cellular attributes using pseudo amino acid composition. Proteins Struct Funct Genet 43:246–255 (Erratum: ibid, 2001, vol 44, 60)

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2004a) Insights from modelling the 3D structure of the extracellular domain of alpha7 nicotinic acetylcholine receptor. Biochem Biophys Res Commun 319:433–438

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2004b) Modelling extracellular domains of GABA-A receptors: subtypes 1, 2, 3, and 5. Biochem Biophys Res Commun 316:636–642

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2004c) Molecular therapeutic target for type-2 diabetes. J Proteome Res 3:1284–1288

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2004d) Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134

    PubMed  CAS  Google Scholar 

  • Chou KC (2005a) Coupling interaction between thromboxane A2 receptor and alpha-13 subunit of guanine nucleotide-binding protein. J Proteome Res 4:1681–1686

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2005b) Prediction of G-protein-coupled receptor classes. J Proteome Res 4:1413–1418

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2005c) Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics 21:10–19

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2002) Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 277:45765–45769

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2003) Predicting protein quaternary structure by pseudo amino acid composition. Proteins Struct Funct Genet 53:282–289

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2004) Predicting protein structural class by functional domain composition. Biochem Biophys Res Commun 321:1007–1009 (Corrigendum: ibid., 2005, Vol.329, 1362)

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Elrod DW (2002) Bioinformatical analysis of G-protein-coupled receptors. J Proteome Res 1:429–433

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Forsen S (1980) Graphical rules for enzyme-catalyzed rate laws. Biochem J 187:829–835

    PubMed  CAS  Google Scholar 

  • Chou KC, Liu WM (1981) Graphical rules for non-steady state enzyme kinetics. J Theor Biol 91:637–654

    Article  CAS  Google Scholar 

  • Chou KC, Shen HB (2006a) Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun 347:150–157

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006b) Large-scale predictions of Gram-negative bacterial protein subcellular locations. J Proteome Res 5:3420–3428

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006c) Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-nearest neighbor classifiers. J Proteome Res 5:1888–1897

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007a) Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 6:1728–1734

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007b) Large-scale plant protein subcellular location prediction. J Cell Biochem 100:665–678

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007c) MemType-2L: a web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Commun 360:339–345

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007d) Review: recent progresses in protein subcellular location prediction. Anal Biochem 370:1–16

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007e) Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Commun 357:633–640

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2008a) Cell-PLoc: a package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2008b) ProtIdent: a web server for identifying proteases and their types by fusing functional domain and sequential evolution information. Biochem Biophys Res Commun 376:321–325

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Zhang CT (1995) Review: prediction of protein structural classes. Crit Rev Biochem Mol Biol 30:275–349

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Zhou GP (1982) Role of the protein outside active site on the diffusion-controlled reaction of enzyme. J Am Chem Soc 104:1409–1413

    Article  CAS  Google Scholar 

  • Chou KC, Jiang SP, Liu WM, Fee CH (1979) Graph theory of enzyme kinetics: 1. Steady-state reaction system. Sci Sin 22:341–358

    CAS  Google Scholar 

  • Chou KC, Nemethy G, Scheraga HA (1984) Energetic approach to packing of a-helices: 2. General treatment of nonequivalent and nonregular helices. J Am Chem Soc 106:3161–3170

    Article  CAS  Google Scholar 

  • Chou KC, Maggiora GM, Nemethy G, Scheraga HA (1988) Energetics of the structure of the four-alpha-helix bundle in proteins. Proc Natl Acad Sci USA 85:4295–4299

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Wei DQ, Zhong WZ (2003) Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem Biophys Res Commun 308:148–151 (Erratum: ibid., 2003, Vol.310, 675)

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Wei DQ, Du QS, Sirois S, Zhong WZ (2006) Review: progress in computational approach to drug development against SARS. Curr Med Chem 13:3263–3270

    Article  PubMed  CAS  Google Scholar 

  • Cornish-Bowden A (1979) Fundamentals of enzyme kinetics, Chap. 4. Butterworths, London

    Google Scholar 

  • Dea-Ayuela MA, Perez-Castillo Y, Meneses-Marcel A, Ubeira FM, Bolas-Fernandez F, Chou KC, Gonzalez-Diaz H (2008) HP-Lattice QSAR for dynein proteins: Experimental proteomics (2D-electrophoresis, mass spectrometry) and theoretic study of a Leishmania infantum sequence. Bioorg Med Chem 16:7770–7776

    Article  PubMed  CAS  Google Scholar 

  • Deng JL (1982) Control problems of grey systems. Syst Control Lett 1(5):288–294

    Article  Google Scholar 

  • Ding YS, Zhang TL (2008) Using Chou’s pseudo amino acid composition to predict subcellular localization of apoptosis proteins: an approach with immune genetic algorithm-based ensemble classifier. Pattern Recognit Lett 29:1887–1892

    Article  CAS  Google Scholar 

  • Ding YS, Zhang TL, Chou KC (2007) Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein Pept Lett 14:811–815

    Article  PubMed  CAS  Google Scholar 

  • Doyle DA, Morais CJ, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  PubMed  CAS  Google Scholar 

  • Du QS, Mezey PG, Chou KC (2005) Heuristic molecular lipophilicity potential (HMLP): a 2D-QSAR study to LADH of molecular family pyrazole and derivatives. J Comput Chem 26:461–470

    Article  PubMed  CAS  Google Scholar 

  • Du QS, Huang RB, Chou KC (2008a) Review: recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design. Curr Protein Pept Sci 9:248–259

    Article  PubMed  CAS  Google Scholar 

  • Du QS, Huang RB, Wei YT, Du LQ, Chou KC (2008b) Multiple field three dimensional quantitative structure-activity relationship (MF-3D-QSAR). J Comput Chem 29:211–219

    Article  PubMed  CAS  Google Scholar 

  • Gao QB, Wang ZZ (2006) Classification of G-protein coupled receptors at four levels. Protein Eng Des Sel 19(11):511–516

    Article  PubMed  CAS  Google Scholar 

  • Gao WN, Wei DQ, Li Y, Gao H, Xu WR, Li AX, Chou KC (2007) Agaritine and its derivatives are potential inhibitors against HIV proteases. Med Chem 3:221–226

    Article  PubMed  CAS  Google Scholar 

  • Garian R (2001) Prediction of quaternary structure from primary structure. Bioinformatics 17:551–556

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Parai B (2008) Protein secondary structure prediction using distance based classifiers. Int J Approx Reason 47:37–44

    Article  Google Scholar 

  • Gonzalez-Diaz H, Sanchez-Gonzalez A, Gonzalez-Diaz Y (2006) 3D-QSAR study for DNA cleavage proteins with a potential anti-tumor ATCUN-like motif. J Inorg Biochem 100:1290–1297

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Díaz H, Gonzalez-Díaz Y, Santana L, Ubeira FM, Uriarte E (2008) Proteomics, networks, and connectivity indices. Proteomics 8:750–778

    Article  PubMed  CAS  Google Scholar 

  • Jiang X, Wei R, Zhang TL, Gu Q (2008) Using the concept of Chou’s pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy. Protein Pept Lett 15:392–396

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Niu B, Feng KY, Lu WC, Cai YD, Li GZ (2008) Predicting subcellular localization with AdaBoost learner. Protein Pept Lett 15:286–289

    Article  PubMed  CAS  Google Scholar 

  • Kannan S, Hauth AM, Burger G (2008) Function prediction of hypothetical proteins without sequence similarity to proteins of known function. Protein Pept Lett 15:1107–1116

    Article  PubMed  CAS  Google Scholar 

  • Karplus K, Barrett C, Hughey R (1998) Hidden markov models for detecting remote preotein homologies. Bioinformatics 14:846–856

    Article  PubMed  CAS  Google Scholar 

  • King EL, Altman C (1956) A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J Phys Chem 60:1375–1378

    Article  CAS  Google Scholar 

  • Kuzmic P, Ng KY, Heath TD (1992) Mixtures of tight-binding enzyme inhibitors. Kinetic analysis by a recursive rate equation. Anal Biochem 200:68–73

    Article  PubMed  CAS  Google Scholar 

  • Li FM, Li QZ (2008) Predicting protein subcellular location using Chou’s pseudo amino acid composition and improved hybrid approach. Protein Pept Lett 15:612–616

    Article  PubMed  Google Scholar 

  • Li Y, Wei DQ, Gao WN, Gao H, Liu BN, Huang CJ, Xu WR, Liu DK, Chen HF, Chou KC (2007) Computational approach to drug design for oxazolidinones as antibacterial agents. Med Chem 3:576–582

    Article  PubMed  CAS  Google Scholar 

  • Lin H (2008) The modified Mahalanobis discriminant for predicting outer membrane proteins by using Chou’s pseudo amino acid composition. J Theor Biol 252:350–356

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Ding H, Feng-Biao Guo FB, Zhang AY, Huang J (2008) Predicting subcellular localization of mycobacterial proteins by using Chou’s pseudo amino acid composition. Protein Pept Lett 15:739–744

    Article  PubMed  CAS  Google Scholar 

  • Liu SF, Fang ZG, Lin Y (2005) A new definition for the degree of grey incidence. Sci Inq 7(2):111–124

    Google Scholar 

  • Myers D, Palmer G (1985) Microcomputer tools for steady-state enzyme kinetics. Bioinformatics (original: Comput Appl Biosci) 1:105–110

    CAS  Google Scholar 

  • Niu B, Jin YH, Feng KY, Liu L, Lu WC, Cai YD, Li GZ (2008) Predicting membrane protein types with bagging learner. Protein Pept Lett 15:590–594

    Article  PubMed  CAS  Google Scholar 

  • Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102:10870–10875

    Article  PubMed  CAS  Google Scholar 

  • Oxenoid K, Rice AJ, Chou JJ (2007) Comparing the structure and dynamics of phospholamban pentamer in its unphosphorylated and pseudo-phosphorylated states. Protein Sci 16:1977–1983

    Article  PubMed  CAS  Google Scholar 

  • Perutz MF (1964) The hemoglobin molecule. Sci Am 211:65–76

    Google Scholar 

  • Prado-Prado FJ, Gonzalez-Diaz H, de la Vega OM, Ubeira FM, Chou KC (2008) Unified QSAR approach to antimicrobials. Part 3: First multi-tasking QSAR model for Input-Coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds. Bioorg Med Chem 16:5871–5880

    Article  PubMed  CAS  Google Scholar 

  • Schnell JR, Chou JJ (2008) Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007a) EzyPred: a top-down approach for predicting enzyme functional classes and subclasses. Biochem Biophys Res Commun 364:53–59

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007b) Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Eng Des Sel 20:39–46

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007c) Hum-mPLoc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites. Biochem Biophys Res Commun 355:1006–1011

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007d) Nuc-PLoc: a new web-server for predicting protein subnuclear localization by fusing PseAA composition and PsePSSM. Protein Eng Des Sel 20:561–567

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007e) Signal-3L: a 3-layer approach for predicting signal peptide. Biochem Biophys Res Commun 363:297–303

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007f) Virus-PLoc: a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers 85:233–240

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2008a) HIVcleave: a web-server for predicting HIV protease cleavage sites in proteins. Anal Biochem 375:388–390

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2008b) PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373:386–388

    Article  PubMed  CAS  Google Scholar 

  • Shi MG, Huang DS, Li XL (2008) A protein interaction network analysis for yeast integral membrane protein. Protein Pept Lett 15:692–699

    Article  PubMed  CAS  Google Scholar 

  • Sirois S, Wei DQ, Du QS, Chou KC (2004) Virtual screening for SARS-CoV protease based on KZ7088 pharmacophore points. J Chem Inf Comput Sci 44:1111–1122

    PubMed  CAS  Google Scholar 

  • Tian F, Lv F, Zhou P, Yang Q, Jalbout AF (2008) Toward prediction of binding affinities between the MHC protein and its peptide ligands using quantitative structure-activity relationship approach. Protein Pept Lett 15:1033–1043

    Article  PubMed  CAS  Google Scholar 

  • Tretter V, Ehya N, Fuchs K, Sieghart W (1997) Stoichiometry and assembly of a recombinant GABAA receptor subtype. J Neurosci 17:2728–2737

    PubMed  CAS  Google Scholar 

  • Tsai L, Liou HY, Jiang GF (2005) Application of grey relational analysis to the influential factors on natural frequencies of helical springs. J Grey Syst 8(2):141–156

    Google Scholar 

  • Wang JF, Wei DQ, Chen C, Li Y, Chou KC (2008a) Molecular modeling of two CYP2C19 SNPs and its implications for personalized drug design. Protein Pept Lett 15:27–32

    Article  PubMed  Google Scholar 

  • Wang T, Yang J, Shen HB, Chou KC (2008b) Predicting membrane protein types by the LLDA algorithm. Protein Pept Lett 15:915–921

    Article  PubMed  CAS  Google Scholar 

  • Wootton JC, Federhen S (1993) Statistics of local complexity in amino acid sequences and sequence databases. Comput Chem 17:149–163

    Article  CAS  Google Scholar 

  • Wu G, Yan S (2008) Prediction of mutations in H3N2 hemagglutinins of influenza a virus from North America based on different datasets. Protein Pept Lett 15:144–152

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Chou KC (2007) Digital coding of amino acids based on hydrophobic index. Protein Pept Lett 14:871–875

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao S, Ding Y, Huang Z, Huang Y, Chou KC (2005) Using complexity measure factor to predict protein subcellular location. Amino Acids 28:57–61

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao SH, Huang ZD, Chou KC (2006) Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor. J Comput Chem 27:478–482

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Lin WZ, Chou KC (2008a) Using grey dynamic modeling and pseudo amino acid composition to predict protein structural classes. J Comput Chem 29:2018–2024

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Wang P, Chou KC (2008b) GPCR-CA: A cellular automaton image approach for predicting G-protein-coupled receptor functional classes. J Comput Chem (in press)

  • Xiao X, Wang P, Chou KC (2008c) Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image. J Theor Biol 254:691–696

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Wang C, Li Y (2006) Classification of protein quaternary structure by function domain composition. BMC Bioinformatics 7:187

    Article  PubMed  CAS  Google Scholar 

  • Zhang GY, Fang BS (2008) Predicting the cofactors of oxidoreductases based on amino acid composition distribution and Chou’s amphiphilic pseudo amino acid composition. J Theor Biol 253:310–315

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Pan Q, Zhang HC, Zhang YL, Wang HY (2003) Classification of protein quaternary structure with support vector machine. Bioinformatics 19:2390–2396

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Wei DQ, Du QS, Chou KC (2006a) Molecular modeling studies of peptide drug candidates against SARS. Med Chem 2:309–314

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Pan Q, Zhang HC, Shao ZC, Shi JY (2006b) Prediction protein homooligomer types by pesudo amino acid composition: approached with an improved feature extraction and Naive Bayes feature fusion. Amino Acids 30:461–468

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Chen W, Zhao CH, Cheng YM, Pan Q (2007) Predicting protein quaternary structure with multi-scale energy of amino acid factor solution scores and their combination. Lecture Notes in Computer Science, pp 65–72

  • Zhang GY, Li HC, Fang BS (2008) Predicting lipase types by improved Chou’s pseudo-amino acid composition. Protein Pept Lett 15:1132–1137

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Wei DQ, Zhang R, Wang C, Wei H, Chou KC (2007) Screening for new agonists against Alzheimer’s disease. Med Chem 3:488–493

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP (1998) An intriguing controversy over protein structural class prediction. J Protein Chem 17:729–738

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Assa-Munt N (2001) Some insights into protein structural class prediction. Proteins Struct Funct Genet 44:57–59

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Deng MH (1984) An extension of Chou’s graphical rules for deriving enzyme kinetic equations to system involving parallel reaction pathways. Biochem J 222:169–176

    PubMed  CAS  Google Scholar 

  • Zhou GP, Doctor K (2003) Subcellular location prediction of apoptosis proteins. Proteins Struct Funct Genet 50:44–48

    Article  PubMed  CAS  Google Scholar 

  • Zhou XB, Chen C, Li ZC, Zou XY (2007) Using Chou’s amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J Theor Biol 248:546–551

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is indebted to Professor Dr. Chou for illuminating discussion. The work in this research was supported by the grants from the National Natural Science Foundation of China (No. 60661003), the Province National Natural Science Foundation of Jiangxi (No. 0611060), and the plan for training youth scientists (stars of Jing-Gang) of province Jiangxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Lin, WZ. Application of protein grey incidence degree measure to predict protein quaternary structural types. Amino Acids 37, 741–749 (2009). https://doi.org/10.1007/s00726-008-0212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0212-9

Keywords

Navigation