Skip to main content

Advertisement

Log in

Prediction of protein structure class by coupling improved genetic algorithm and support vector machine

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Structural class characterizes the overall folding type of a protein or its domain. Most of the existing methods for determining the structural class of a protein are based on a group of features that only possesses a kind of discriminative information for the prediction of protein structure class. However, different types of discriminative information associated with primary sequence have been completely missed, which undoubtedly has reduced the success rate of prediction. We present a novel method for the prediction of protein structure class by coupling the improved genetic algorithm (GA) with the support vector machine (SVM). This improved GA was applied to the selection of an optimized feature subset and the optimization of SVM parameters. Jackknife tests on the working datasets indicated that the prediction accuracies for the different classes were in the range of 97.8–100% with an overall accuracy of 99.5%. The results indicate that the approach has a high potential to become a useful tool in bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguero-Chapin G, Gonzalez-Diaz H, Molina R, Varona-Santos J, Uriarte E, Gonzalez-Diaz Y (2006) Novel 2D maps and coupling numbers for protein sequences. The first QSAR study of polygalacturonases; isolation and prediction of a novel sequence from Psidium guajava L. FEBS Lett 580:723–730

    Article  PubMed  CAS  Google Scholar 

  • Bahar I, Atilgan AR, Jernigan RL, Erman B (1997) Understanding the recognition of protein structureal classes by amino acid composition. Proteins 29:172–185

    Article  PubMed  CAS  Google Scholar 

  • Caballero J, Fernandez L, Garriga M, Abreu JI, Collina S, Fernandez M (2007) Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines. J Mol Graph Model 26:166–178

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Chou KC (2005a) Using functional domain composition to predict enzyme family classes. J Proteome Res 4:109–111

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Chou KC (2005b) Predicting enzyme subclass by functional domain composition and pseudo amino acid composition. J Proteome Res 4:967–971

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Chou KC (2006) Predicting membrane protein type by functional domain composition and pseudo amino acid composition. J Theor Bio 238:395–400

    Article  CAS  Google Scholar 

  • Cai YD, Zhou GP (2000) Prediction of protein structural classes by neural network. Biochimie 82:783–785

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Liu XJ, Xu XB, Zhou GP (2001) Support vector machines for predicting protein structural class. BMC Bioinformatics 2:1–5

    Article  Google Scholar 

  • Cai YD, Liu XJ, Xu XB, Chou KC (2002) Prediction of protein structural classes by support vector machines. Comput Chem 26:293–296

    Article  PubMed  CAS  Google Scholar 

  • Cai YD, Ricardo PW, Jen CH, Chou KC (2004) Application of SVM to predict membrane protein types. J Theor Boil 226:373–376

    Article  CAS  Google Scholar 

  • Cai YD, Feng KY, Lu WC, Chou KC (2006) Using logitboost classifier to predict protein structural classes. J Theor Biol 238:172–176

    Article  PubMed  CAS  Google Scholar 

  • Cao YF, Liu S, Zhang L, Qin J, Wang J, Tang KX (2006) Prediction of protein structural class with rough sets. BMC Bioinformatics 7:1–6

    Article  CAS  Google Scholar 

  • Cedano J, Aloy P, P’erez-Pons JA, Querol E (1997) Relation between amino acid composition and cellular location of proteins. J Mol Biol 266:594–600

    Article  PubMed  CAS  Google Scholar 

  • Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  • Chen C, Tian YX, Zou XY, Cai PX, Mo JY (2006a) Using pseudo-amino acid composition and support vector machine to predict protein structural class. J Theor Biol 243:444–448

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Zhou XB, Tian YX, Zou XY, Cai PX (2006b) Predicting protein structural class with pseudo-amino acid composition and support vector machine fusion network. Anal Biochem 357:116–121

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Liu H, Yang J, Chou KC (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33:423–428

    Article  PubMed  CAS  Google Scholar 

  • Chen YL, Li QZ (2007a) Prediction of apoptosis protein subcellular location using improved hybrid approach and pseudo amino acid composition. J Theor Biol 248:377–381

    Article  PubMed  CAS  Google Scholar 

  • Chen YL, Li QZ (2007b) Prediction of the subcellular location of apoptosis proteins. J Theor Biol 245:775–783

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1992) Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol 223:509–517

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1995) A novel-approach to predicting protein structural classes in a (20–1)-D amino –acid-composition space. Proteins 21:319–344

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1999a) Using pair-coupled amino acid composition to predict protein secondary structure content. J Protein Chem 18:473–480

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (1999b) A key driving force in determination of protein structural classes. Biochem Biophys Res Commun 264:216–224

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2000) Prediction of protein structural classes and subcellular locations. Curr Protein Pept Sc 1:171–208

    Article  CAS  Google Scholar 

  • Chou KC (2001) Prediction of protein cellular attributes using pseudo-amino acid composition. Proteins 43:246–255

    Article  PubMed  CAS  Google Scholar 

  • Chou KC (2004) Review: structural bioinformatics and its impact to biomedical science. Curr Med Chem 11:2105–2134

    PubMed  CAS  Google Scholar 

  • Chou KC (2005) Review: progress in protein structural class prediction and its impact to bioinformatics and proteomics. Curr Protein Pept Sc 6:423–436

    Article  CAS  Google Scholar 

  • Chou KC, Cai YD (2002) Using functional domain composition and support vector machines for prediction of protein subcellular location. J Biol Chem 277:45765–45769

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Cai YD (2004) Predicting protein structural class by functional domain composition. Biochem Biophys Res Commun 321:1007–1009

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Elrod DW (1999) Protein subcellular location prediction. Protein Eng 12:107–118

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Elrod DW (2002) Bioinformatical analysis of G-protein-coupled receptors. J Proteome Res 1:429–433

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Elrod DW (2003) Prediction of enzyme family classes. J Proteome Res 2:183–190

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Maggiora GM (1998) Domain structural class prediction. Protein Eng 11:523–538

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006a) Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization. Biochem Biophys Res Commun 347:150–157

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2006b) Predicting eukaryotic protein subcellular location by fusing optimized evidence-theoretic K-nearest neighbor classifiers. J Proteome Res 5:1888–1897

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007a) Euk-mPLoc: a fusion classifier for large-scale eukaryotic protein subcellular location prediction by incorporating multiple sites. J Proteome Res 6:1728–1734

    PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007b) Large-scale plant protein subcellular location prediction. J Cell Biochem 100:665–678

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007c) MemType-2L: a Web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM. Biochem Biophys Res Comm 360:339–345

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007d) Review: recent progresses in protein subcellular location prediction. Anal Biochem 370:1–16

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2007e) Signal-CF: a subsite-coupled and window-fusing approach for predicting signal peptides. Biochem Biophys Res Comm 357:633–640

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Shen HB (2008) Cell-PLoc: a package of web-servers for predicting subcellular localization of proteins in various organisms. Nat Protoc 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Zhang CT (1992) A correlation-coefficient method to predicting protein-structural classes form amino-acid compositions. Eur J Biochem 207:429–433

    Article  PubMed  CAS  Google Scholar 

  • Chou KC, Zhang CT (1994) Predicting protein folding types by distance functions that make allowances for amino acid interactions. J Biol Chem 269:22014–22020

    PubMed  CAS  Google Scholar 

  • Chou KC, Zhang CT (1995) Review: prediction of protein structural classes. Crit Rev Biochem Mol Biol 30:275–349

    Article  PubMed  CAS  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Google Scholar 

  • Diao Y, Li M, Feng Z, Yin J, Pan Y (2007) The community structure of human cellular signaling network. J Theor Biol 247:608–615

    Article  PubMed  Google Scholar 

  • Diao Y, Ma D, Wen Z, Yin J, Xiang J, Li M (2008) Using pseudo amino acid composition to predict transmembrane regions in protein: cellular automata and Lempel-Ziv complexity. Amino Acids. doi:10.1007/s00726-007-0550-z

  • Ding CHQ, Dubchak I (2001) Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics 17:349–358

    Article  PubMed  CAS  Google Scholar 

  • Ding YS, Zhang TL, Chou KC (2007) Prediction of protein structure classes with pseudo amino acid composition and fuzzy support vector machine network. Protein Peptide Lett 14:811–815

    Article  CAS  Google Scholar 

  • Du P, Li Y (2006) Prediction of protein submitochondria locations by hybridizing pseudo-amino acid composition with various physicochemical features of segmented sequence. BMC Bioinformatics 7:518

    Article  PubMed  CAS  Google Scholar 

  • Du QS, Wei DQ, Chou KC (2003) Correlations of amino acids in proteins. Peptides 24:1863–1869

    Article  PubMed  CAS  Google Scholar 

  • Du QS, Jiang ZQ, He WZ, Li DP, Chou KC (2006) Amino acid principal component analysis (AAPCA) and its applications in protein structural class prediction. J Biomol Struct Dyn 23:635–640

    PubMed  CAS  Google Scholar 

  • Eshelmen LJ, Schaffer JD (1991) Preventing premature convergence in genetic algorithms by preventing incest. In: Belew RK, Booker LB (eds) Proc 4th Int Conf Genetic Algorithms. Morgan Kaufmann, San Francisco, pp 115–122

  • Feng KY, Cai YD, Chou KC (2005) Boosting classifier for predicting protein domain structural class. Biochem Biophys Res Commun 334:213–217

    Article  PubMed  CAS  Google Scholar 

  • Fang Y, Guo Y, Feng Y, Li M (2008) Predicting DNA-binding proteins: approached from Chou’s pseudo amino acid composition and other specific sequence features. Amino Acids. doi:10.1007/s00726-007-0568-2

  • Feng ZP, Zhang CT (2000) Prediction of membrane protein types based on the hydrophobic index of amino acids. J Protein Chem 19:269–275

    Article  PubMed  CAS  Google Scholar 

  • Gao Y, Shao SH, Xiao X, Ding YS, Huang YS, Huang ZD, Chou KC (2005) Using pseudo amino acid composition to predict protein subcellular location: approached with Lyapunov index, Bessel function, and Chebyshev filter. Amino Acids 28:373–376

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Perez-Bello A, Uriarte E, Gonzalez-Diaz Y (2006) QSAR study for mycobacterial promoters with low sequence homology. Bioorg Med Chem Lett 16:547–553

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Aguero-Chapin G, Varona J, Molina R, Delogu G, Santana L, Uriarte E, Podda G (2007a) 2D-RNA-coupling numbers: a new computational chemistry approach to link secondary structure topology with biological function. J Comput Chem 28:1049–1056

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Perez-Castillo Y, Podda G, Uriarte E (2007b) Computational chemistry comparison of stable/nonstable protein mutants classification models based on 3D and topological indices. J Comput Chem 28:1990–1995

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Diaz H, Vilar S, Santana L, Uriarte E (2007c) Medicinal chemistry and bioinformatics—current trends in drugs discovery with networks topological indices. Curr Top Med Chem 10:1015–1029

    Article  Google Scholar 

  • Guo YZ, Li M, Lu M, Wen Z, Wang K, Li G, Wu J (2006) Classifying G protein-coupled receptors and nuclear receptors based on protein power spectrum from fast Fourier transform. Amino Acids 30:397–402

    Article  PubMed  CAS  Google Scholar 

  • Handels H, Ross T, Kreusch J, Wolff HH, Pöppl SJ (1999) Feature selection for optimized skin tumor recognition using genetic algorithms. Artif Intell Med 16:283–297

    Article  PubMed  CAS  Google Scholar 

  • Horne DS (1988) Prediction of protein helix content from an autocorrelation analysis of sequence hydrophobicities. Biopolymers 27:451–477

    Article  PubMed  CAS  Google Scholar 

  • Hua SJ, Sum ZR (2001) A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 308:397–407

    Article  PubMed  CAS  Google Scholar 

  • Huang CL, Liao HC, Chen MC (2008) Prediction model building and feature selection with support vector machines in breast cancer diagnosis. Expert Syst Appl 34:578–587

    Article  Google Scholar 

  • Hsu CW, Lin CJ (2002) A simple decomposition method for support vector machine. Mach Learn 46:219–314

    Article  Google Scholar 

  • Jahandideh S, Abdolmaleki P, Jahandideh M, Asadabadi EB (2007a) Novel two-stage hybrid neural discriminant model for predicting proteins structural classes. Biophys Chem 128:87–93

    Article  PubMed  CAS  Google Scholar 

  • Jahandideh S, Abdolmaleki P, Jahandideh M, Hayatshahi SHS (2007b) Novel hybrid method for the evaluation of parameters contributing in determination of protein structural classes. J Theor Biol 244:275–281

    Article  PubMed  CAS  Google Scholar 

  • Jalali-Heravi M, Kyani A (2007) Application of genetic algorithm-kernel partial least square as a novel nonlinear feature selection method: activity of carbonic anhydrase II inhibitors. Eur J Med Chem 42:649–659

    Article  PubMed  CAS  Google Scholar 

  • Jin LX, Fang WW, Tang HW (2003) Prediction of protein structural classes by a new measure of information discrepancy. Comput Biol Chem 23:373–380

    Article  CAS  Google Scholar 

  • Kedarisetti KD, Kurgan L, Dick S (2006) Classifier ensembles for protein structural class prediction with varying homology. Biochem Biophys Res Commun 348:981–988

    Article  PubMed  CAS  Google Scholar 

  • Kim JK, Raghava GPS, Bang SY, Choi S (2006) Prediction of subcellular localization of proteins using pairwise sequence alignment and support vector machine, Pattern. Recogn Lett 27:996–1001

    Article  Google Scholar 

  • Kohavi R, John GH (1997) Wrappers for feature subset selection. Artif Intell 97:273–324

    Article  Google Scholar 

  • Kurgan LA, Stach W, Ruan J (2007) Novel scales based on hydrophobicity indices for secondary protein structure. J Theor Biol 248:354–366

    Article  PubMed  CAS  Google Scholar 

  • Kuric L (2007). The digital language of amino acids. Amino Acids 33:653–661

    Article  PubMed  CAS  Google Scholar 

  • LaValle SM, Branicky MS (2002) On the relationship between classical grid search and probabilistic roadmaps. Int J Robot Res 23:673–692

    Article  Google Scholar 

  • Levitt M, Chothia C (1976) Structural patterns in globular proteins. Nature 261:552–558

    Article  PubMed  CAS  Google Scholar 

  • Li FM, Li QZ (2007) Using pseudo amino acid composition to predict protein subnuclear location with improved hybrid approach. Amino Acids. doi:10.1007/s00726-007-0545-9

  • Li ZR, Lin HH, Han LY, Jiang L, Chen X, Chen YZ (2006) PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res 34:32–37

    Article  CAS  Google Scholar 

  • Lin H, Li QZ (2007a) Predicting conotoxin superfamily and family by using pseudo amino acid composition and modified Mahalanobis discriminant. Biochem Biophys Res Commun 354:548–551

    Article  PubMed  CAS  Google Scholar 

  • Lin H, Li QZ (2007b) Using pseudo amino acid composition to predict protein structural class: approached by incorporating 400 dipeptide components. J Comput Chem 28:1463–1466

    Article  PubMed  CAS  Google Scholar 

  • Lin Z, Pan XM (2001) Accurate prediction of protein secondary structural content. J Protein Chem 20:217–220

    Article  PubMed  Google Scholar 

  • Liu DQ, Liu H, Shen HB, Yang J, Chou KC (2007) Predicting secretory protein signal sequence cleavage sites by fusing the marks of global alignments. Amino Acids 32:493–496

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Wang M, Chou KC (2005a) Low-frequency Fourier spectrum for predicting membrane protein types. Biochem Biophys Res Commun 336:737–739

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Yang J, Wang M, Xue L, Chou KC (2005b) Using Fourier spectrum analysis and pseudo amino acid composition for prediction of membrane protein types. Protein J 24:385–389

    Article  PubMed  CAS  Google Scholar 

  • Luo RY, Feng ZP, Liu JK (2002) Prediction of protein structural class by amino acid and polypeptide composition. Eur J Biochem 269:4219–4225

    Article  PubMed  CAS  Google Scholar 

  • Lv QZ, Shen GL, Yu RQ (2003) A chaotic approach to maintain the population diversity of genetic algorithm in network training. Comput Biol Chem 27:363–371

    Article  CAS  Google Scholar 

  • Metfessel BA, Saurugger PN, Connelly DP, Rich SS (1993) Cross-validation of protein structural class prediction using statistical clustering and neural networks. Protein Sci 2:1170–1182

    Article  Google Scholar 

  • Mondal S, Bhavna R, Mohan Babu R, Ramakumar S (2006) Pseudo amino acid composition and multi-class support vector machines approach for conotoxin superfamily classification. J Theor Biol 243:252–260

    Article  PubMed  CAS  Google Scholar 

  • Mundra P, Kumar M, Kumar KK, Jayaraman VK, Kulkarni BD (2007) Using pseudo amino acid composition to predict protein subnuclear localization: approached with PSSM. Pattern Recognit Lett 28:1610–1615

    Article  Google Scholar 

  • Niu B, Cai YD, Lu WC, Zheng GY, Chou KC (2006) Predicting protein structural class with AdaBoost learner. Protein Peptide Lett 13:489–492

    Article  CAS  Google Scholar 

  • Pan YX, Zhang ZZ, Guo ZM, Feng GY, Huang ZD, He L (2003) Application of pseudo amino acid composition for predicting protein subcellular location: stochastic signal processing approach. J Protein Chem 22:395–402

    Article  PubMed  CAS  Google Scholar 

  • Pu X, Guo J, Leung H, Lin Y (2007) Prediction of membrane protein types from sequences and position-specific scoring matrices. J Theor Biol 247:259–265

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2005a) Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition. Biochem Biophys Res Comm 337:752–756

    PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2005b) Using optimized evidence-theoretic K-nearest neighbor classifier and pseudo amino acid composition to predict membrane protein types. Biochem Biophys Res Comm 334:288–292

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2006) Ensemble classifier for protein fold pattern recognition. Bioinformatics 22:1717–1722

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007a) Gpos-PLoc: an ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Eng Des Sel 20:39–46

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007b) Hum-mPLoc: an ensemble classifier for large-scale human protein subcellular location prediction by incorporating samples with multiple sites. Biochem Biophys Res Commun 355:1006–1011

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007c) Using ensemble classifier to identify membrane protein types. Amino Acids 32:483–488

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2007d) Virus-PLoc: a fusion classifier for predicting the subcellular localization of viral proteins within host and virus-infected cells. Biopolymers 85:233–240

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Chou KC (2008) PseAAC: a flexible web-server for generating various kinds of protein pseudo amino acid composition. Anal Biochem 373:386–388

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Yang J, Liu XJ, Chou KC (2005) Using supervised fuzzy clustering to predict protein structural classes. Biochem Biophys Res Commun 334:577–581

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Yang J, Chou KC (2006) Fuzzy KNN for predicting membrane protein types from pseudo amino acid composition. J Theor Biol 240:9–13

    Article  PubMed  CAS  Google Scholar 

  • Shen HB, Yang J, Chou KC (2007a) Euk-PLoc: an ensemble classifier for large-scale eukaryotic protein subcellular location prediction. Amino Acids 33:57–67

    Article  PubMed  CAS  Google Scholar 

  • Shen Q, Shi WM, Kong W, Ye BX (2007b) A combination of modified particle swarm optimization algorithm and support vector machine for gen selection and tumor classification. Talanta 71:1679–1683

    Article  CAS  PubMed  Google Scholar 

  • Shi JY, Zhang SW, Pan Q, Cheng YM, Xie J (2007) Prediction of protein subcellular localization by support vector machines using multi-scale energy and pseudo amino acid composition. Amino Acids 33:69–74

    Article  PubMed  CAS  Google Scholar 

  • Shi JY, Zhang SW, Pan Q, Zhou GP (2008) Using pseudo amino acid composition to predict protein subcellular location: approached with amino acid composition distribution. Amino Acids. doi:10.1007/s00726-007-0623-z

  • Sivagaminathan RK, Ramakrishnan S (2007) A hybrid approach for feature subset selection using neural networks and ant colony optimization. Expert Syst Appl 33:49–60

    Article  Google Scholar 

  • Sun XD, Huang RB (2006) Prediction of protein structural classes using support vector machines. Amino Acids 30:469–475

    Article  PubMed  CAS  Google Scholar 

  • Tan F, Feng X, Fang Z, Li M, Guo Y, Jiang L (2007) Prediction of mitochondrial proteins based on genetic algorithm – partial least squares and support vector machine. Amino Acids 33:669–675

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Yang J, Chou KC (2005a) Using string kernel to predict signal peptide cleavage site based on subsite coupling model. Amino Acids 28:395–402 (Erratum, ibid. 2005, 29:301)

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Yang J, Liu GP, Xu ZJ, Chou KC (2004) Weighted-support vector machines for predicting membrane protein types based on pseudo amino acid composition. Protein Eng Ses Sel 17:509–516

    Article  CAS  Google Scholar 

  • Wang M, Yang J, Xu ZJ, Chou KC (2005b) SLLE for predicting membrane protein types. J Theor Biol 232:7–15

    Article  PubMed  CAS  Google Scholar 

  • Wang SQ, Yang J, Chou KC (2006) Using stacked generalization to predict membrane protein types based on pseudo amino acid composition. J Theor Biol 242:941–946

    Article  PubMed  CAS  Google Scholar 

  • Wen Z, Li M, Li Y, Guo Y, Wang K (2006) Delaunay triangulation with partial least squares projection to latent structures: a model for G-protein coupled receptors classification and fast structure recognition. Amino Acids 32:277–283

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Chou KC (2007) Digital coding of amino acids based on hydrophobic index. Protein Peptide Lett 14:871–875

    Article  CAS  Google Scholar 

  • Xiao X, Shao S, Ding Y, Huang Z, Chen X, Chou KC (2005a) Using cellular automata to generate Image representation for biological sequences. Amino Acids 28:29–35

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao S, Ding Y, Huang Z, Huang Y, Chou KC (2005b) Using complexity measure factor to predict protein subcellular location. Amino Acids 28:57–61

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao SH, Ding YS, Huang ZD, Chou KC (2006a) Using cellular automata images and pseudo amino acid composition to predict protein subcellular location. Amino Acids 30:49–54

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Shao SH, Huang ZD, Chou KC (2006b) Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor. J Comput Chem 27:478–482

    Article  PubMed  CAS  Google Scholar 

  • Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651

    Article  PubMed  CAS  Google Scholar 

  • Yuan SF, Chu FL (2007) Fault diagnosis based on support vector machines with parameter optimization by artificial immunization algorithm. Mech Syst Signal Pr 21:1318–1330

    Article  Google Scholar 

  • Zhang CT, Chou KC (1992) An optimization approach to predicting protein structural class form amino-acid-composition. Protein Sci 1:401–408

    Article  PubMed  CAS  Google Scholar 

  • Zhang CT, Chou KC, Maggiora GM (1995) Predicting protein structural classes from amino-acid-composition—application of fuzzy Clustering. Protein Eng 8:425–435

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Pan Q, Zhang HC, Shao ZC, Shi JY (2006) Prediction protein homo-oligomer types by pseudo amino acid composition: approached with an improved feature extraction and naive Bayes feature fusion. Amino Acids 30:461–468

    Article  PubMed  CAS  Google Scholar 

  • Zhang SW, Zhang YL, Yang HF, Zhao CH, Pan Q (2007) Using the concept of Chou’s pseudo amino acid composition to predict protein subcellular localization: an approach by incorporating evolutionary information and von Neumann entropies. Amino Acids. doi:10.1007/s00726-007-0010-9

  • Zhang TL, Ding YS, Chou KC (2006) Prediction of protein subcellular location using hydrophobic patterns of amino acid sequence. Comput Biolo Chem 30:367–371

    Article  CAS  Google Scholar 

  • Zhang TL, Ding YS (2007) Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Amino Acids 33:623–629

    Article  PubMed  CAS  Google Scholar 

  • Zhang TL, Ding YS, Chou KC (2008) Prediction protein structural classes with pseudo-amino acid composition: approximate entropy and hydrophobicity pattern. J Theor Biol 250:186–193

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZH, Wang ZH, Zhang ZR, Wang YX (2006) A novel method for apoptosis protein subcellular localization prediction combining encoding based on grouped weight and support vector machine. FEBS Lett 580:6169–6174

    Article  PubMed  CAS  Google Scholar 

  • Zhou GF, Xu XH, Zhang CT (1992) A weighting method for predicting protein structural class form amino-acid-composition. Eur J Biochem 210:747–749

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP (1998) An intriguing controversy over protein structural class prediction. J Protein Chem 17:729–738

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Assa-Munt N (2001) Some insights into protein structural class prediction. Proteins 44:57–59

    Article  PubMed  CAS  Google Scholar 

  • Zhou GP, Doctor K (2003) Subcellular location prediction of apoptosis proteins. Proteins 50:44–48

    Article  PubMed  CAS  Google Scholar 

  • Zhou XB, Chen C, Li ZC, Zou XY (2007) Using Chou’s amphiphilic pseudo-amino acid composition and support vector machine for prediction of enzyme subfamily classes. J Theor Biol 248:546–551

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (Nos. 20475068, 20575082), the Natural Science Foundation of Guangdong Province (No. 031577, 7003714), the Scientific Technology Project of Guangdong Province (No. 2005B30101003) and the Scientific Technology Project of Guangzhou City (No. 2007Z3-E0441).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-Y. Zou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, ZC., Zhou, XB., Lin, YR. et al. Prediction of protein structure class by coupling improved genetic algorithm and support vector machine. Amino Acids 35, 581–590 (2008). https://doi.org/10.1007/s00726-008-0084-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0084-z

Keywords

Navigation