Skip to main content
Log in

Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The control of gene expression by enzymes provides a direct pathway for cells to respond to fluctuations in metabolites and nutrients. One example is the proline utilization A (PutA) protein from Escherichia coli. PutA is a membrane-associated enzyme that catalyzes the oxidation of l-proline to glutamate using a flavin containing proline dehydrogenase domain and a NAD+ dependent Δ1-pyrroline-5-carboxylate dehydrogenase domain. In some Gram-negative bacteria such as E. coli, PutA is also endowed with a ribbon–helix–helix DNA-binding domain and acts as a transcriptional repressor of the proline utilization genes. PutA switches between transcriptional repressor and enzymatic functions in response to proline availability. Molecular insights into the redox-based mechanism of PutA functional switching from recent studies are reviewed. In addition, new results from cell-based transcription assays are presented which correlate PutA membrane localization with put gene expression levels. General membrane localization of PutA, however, is not sufficient to activate the put genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahamson JLA, Baker LG, Stephenson JT, Wood JM (1983) Proline dehydrogenase from Escherichia K12, properties of the membrane-associated enzyme. Eur J Biochem 134:77–82

    Article  PubMed  CAS  Google Scholar 

  • Becker DF, Thomas EA (2001) Redox properties of the PutA protein from Escherichia coli and the influence of the flavin redox state on PutA–DNA interactions. Biochemistry 40:4714–4722

    Article  PubMed  CAS  Google Scholar 

  • Brown E, Wood JM (1992) Redesigned purification yields a fully functional PutA protein dimer from Escherichia coli. J Biol Chem 267:13086–13092

    PubMed  CAS  Google Scholar 

  • Brown ED, Wood JM (1993) Conformational change and membrane association of the PutA protein are coincident with reduction of its FAD cofactor by proline. J Biol Chem 268:8972–8979

    PubMed  CAS  Google Scholar 

  • Buckle M (2001) Surface plasmon resonance applied to DNA–protein complexes. In: Moss T (ed) DNA–protein interactions: principles and protocols, vol 148: methods in molecular biology. Humana Press Inc., Totowa, pp 535–546

    Google Scholar 

  • Chen C-C, Wilson TH (1986) Solubilization and functional reconstitution of the proline transport system of Escherichia coli. J Biol Chem 261:2599–2604

    PubMed  CAS  Google Scholar 

  • Görke B, Reinhardt J, Rak B (2005) Activity of Lac repressor anchored to the Escherichia coli inner membrane. Nucleic Acids Res 33:2504–2511

    Article  PubMed  Google Scholar 

  • Gu D, Zhou Y, Kallhoff V, Baban B, Tanner JJ, Becker DF (2004) Identification and characterization of the DNA-binding domain of the multifunctional PutA flavoenzyme. J Biol Chem 279:31171–31176

    Article  PubMed  CAS  Google Scholar 

  • Hall DA, Zhu H, Zhu X, Royce T, Gerstein M, Snyder M (2004) Regulation of gene expression by a metabolic enzyme. Science 306:482–484

    Article  PubMed  CAS  Google Scholar 

  • Jeffery CJ (2004) Molecular mechanisms for multitasking: recent crystal structures of moonlighting proteins. Curr Opin Struct Biol 14:663–668

    Article  PubMed  CAS  Google Scholar 

  • Krishnan N, Becker DF (2005) Characterization of a bifunctional PutA homologue from Bradyrhizobium japonicum and identification of an active site residue that modulates proline reduction of the flavin adenine dinucleotide cofactor. Biochemistry 44:9130–9139

    Article  PubMed  CAS  Google Scholar 

  • Larson JD, Jenkins JL, Schuermann JP, Zhou Y, Becker DF, Tanner JJ (2006) Crystal structures of the DNA-binding domain of Escherichia coli proline utilization A flavoprotein and analysis of the role of Lys9 in DNA recognition. Protein Sci 15:2630–2641

    Article  PubMed  CAS  Google Scholar 

  • Lee YH, Nadaraia S, Gu D, Becker DF, Tanner JJ (2003) Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein. Nat Struct Biol 10:109–114

    Article  PubMed  CAS  Google Scholar 

  • Ling M, Allen SW, Wood JM (1994) Sequence analysis identifies the proline dehydrogenase and pyrroline-5-carboxylate dehydrogenase domains of the multifunctional Escherichia coli PutA protein. J Mol Biol 245:950–956

    Article  Google Scholar 

  • Menzel R, Roth J (1981a) Purification of the putA gene product. J Biol Chem 256:9755–9761

    PubMed  CAS  Google Scholar 

  • Menzel R, Roth J (1981b) Regulation of genes for proline utilization in Salmonella typhimurium: autogenous repression by the putA gene product. J Mol Biol 148:21–44

    Article  PubMed  CAS  Google Scholar 

  • Muro-Pastor AM, Ostrovsky P, Maloy S (1997) Regulation of gene expression by repressor localization: biochemical evidence that membrane and DNA binding by the PutA protein are mutually exclusive. J Bacteriol 179:2788–2791

    PubMed  CAS  Google Scholar 

  • Ostrovsky De Spicer P, Maloy S (1993) PutA protein, a membrane-associated flavin dehydrogenase, acts as a redox-dependent transcriptional regulator. Proc Natl Acad Sci USA 90:4295–4298

    Article  Google Scholar 

  • Ostrovsky De Spicer P, O’Brian K, Maloy S (1991) Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro. J Bacteriol 173:211–219

    Google Scholar 

  • Pogliano J, Ho TQ, Zhong Z, Helinski DR (2001) Multicopy plasmids are clustered and localized in Escherichia coli. Proc Natl Acad Sci USA 98:4486–4491

    Article  PubMed  CAS  Google Scholar 

  • Scarpulla RC, Soffer RL (1978) Membrane-bound proline dehydrogenase from Escherichia coli. J Biol Chem 253:5997–6001

    PubMed  CAS  Google Scholar 

  • Shi Y, Shi Y (2004) Metabolic enzymes and coenzymes in transcription––a direct link between metabolism and transcription? Trends Genet 20:445–452

    Article  PubMed  CAS  Google Scholar 

  • Surber MW, Maloy S (1999) Regulation of flavin dehydrogenase compartmentalization: requirements for PutA-membrane association in Salmonella typhimurium. Biochim Biophys Acta 1421:5–18

    Article  PubMed  CAS  Google Scholar 

  • Wood JM (1981) Genetics of l-proline utilization in Eschericia coli. J Bacteriol 146:895–901

    PubMed  CAS  Google Scholar 

  • Wood J (1987) Membrane association of proline dehydrogenase in Escherichia coli is redox dependent. Proc Natl Acad Sci USA 84:373–377

    Article  PubMed  CAS  Google Scholar 

  • Zelazny A, Seluanov A, Cooper A, Bibi E (1997) The NG domain of the prokaryotic signal recognition particle receptor, FtsY, is fully functional when fused to an unrelated integral membrane polypeptide. Proc Natl Acad Sci USA 94:6025–6029

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Zhou Y, Becker DF (2004) Regulation of PutA-membrane associations by flavin adenine dinucleotide reduction. Biochemistry 43:13165–13174

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Zhang M, Zhu W, Zhou Y, Wanduragala S, Rewinkel D, Tanner JJ, Becker DF (2007) Redox-induced changes in flavin structure and roles of flavin N(5) and the ribityl 2′-OH group in regulating PutA-membrane binding. Biochemistry 46:483–491

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Becker DF (2003) Flavin redox state triggers conformational changes in the PutA protein from Escherichia coli. Biochemistry 42:5469–5477

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Becker DF (2005) Exploring the proline-dependent conformational change in the multifunctional PutA flavoprotein by tryptophan fluorescence spectroscopy. Biochemistry 44:12297–12306

    Article  PubMed  CAS  Google Scholar 

  • Zhu W, Gincherman Y, Docherty P, Spilling CD, Becker DF (2002) Effects of proline analog binding on the spectroscopic and redox properties of PutA. Arch Biochem Biophys 408:131–136

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is a contribution of the University of Nebraska Agricultural Research Division, supported in part by funds provided through the Hatch Act. This research was supported by grants from the National Institutes of Health GM061068 and the National Science Foundation MCB0340912. This publication was also made possible by NIH Grant Number P20 RR-017675-02 from the National Center for Research Resources. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald F. Becker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Zhu, W., Bellur, P.S. et al. Direct linking of metabolism and gene expression in the proline utilization A protein from Escherichia coli . Amino Acids 35, 711–718 (2008). https://doi.org/10.1007/s00726-008-0053-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-008-0053-6

Keywords

Navigation