Skip to main content

Advertisement

Log in

Compressively Sampled MR Image Reconstruction Using Hyperbolic Tangent-Based Soft-Thresholding

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The application of compressed sensing (CS) to magnetic resonance (MR) images utilizes the transformed domain sparsity to enable the reconstruction from an under-sampled k-space (Fourier) data using a non-linear recovery algorithm. In order to estimate the missing k-space data from the partial Fourier samples, the reconstruction algorithms minimize an objective function based on mixed l 1 − l 2 norms. Iterative-shrinkage algorithms, such as parallel coordinate descent (PCD) and separable surrogate functional, provide an efficient numerical technique to minimize the l 1-regularized least square optimization problem. These algorithms require a thresholding step to induce sparsity in the solution, which is an essential requirement of the CS recovery. This paper introduces a novel soft-thresholding method based on the hyperbolic tangent function. It has been shown that by using the proposed thresholding function in the sparsifying domain and a data consistency step in the k-space, the iterative-shrinkage algorithms can be used effectively to recover the under-sampled MR images. For the purpose of demonstration, we use the proposed soft-thresholding and data consistency with the PCD algorithm and compare its performance with the conventional PCD, projection onto convex sets and low-resolution reconstruction methods. The metrics used to compare the various algorithms are the artifact power, the peak signal-to-noise ratio, the correlation and the structural similarity index. The experimental results are validated using Shepp–Logan phantom image as well as real human head MR images taken from the MRI scanner at St. Mary’s Hospital, London.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.A. Fessler, IEEE Signal Process. Magn. 27, 81–89 (2010)

    Article  ADS  Google Scholar 

  2. E.J. Candes, M.B. Wakin, IEEE Signal Process. Magn. 25, 21–30 (2008)

    Article  ADS  Google Scholar 

  3. E.J. Candes, J.K. Romberg, T. Tao, Commun Pur Appl Math 59, 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. R.G. Baraniuk, E. Candes, R. Nowak, M. Vetterli, IEEE Signal Process. Magn. 25, 12–13 (2008)

    Article  ADS  Google Scholar 

  5. M. Lustig, D. Donoho, J.M. Pauly, Magnet. Reson. Med. 58, 1182–1195 (2007)

    Article  Google Scholar 

  6. M. Lustig, D.L. Donoho, J.M. Santos, J.M. Pauly, IEEE Signal Process. Magn. 25, 72–82 (2008)

    Article  ADS  Google Scholar 

  7. V.M. Patel, R. Maleh, A.C. Gilbert, R. Chellappa, I.E.E.E. Trans, Image Process. 21, 94–105 (2012)

    Article  Google Scholar 

  8. Ti-C Chang, L. He, T. Fang, in Proceedings of the 13th Annual Meeting of ISMRM, Seattle, p. 696 (2006)

  9. Y.L. Montagner, E. Angelini, J-C. Olivo-Marin, in 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, IL, USA, pp. 105–108 (2011). doi:10.1109/ISBI.2011.5872365

  10. J. Huang, S. Zhang, D. Metaxas, Med. Image Anal. 15(5), 670–679 (2011)

    Article  Google Scholar 

  11. A. Beck, M. Teboulle, Siam J. Imaging Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Zibulevsky, M. Elad, IEEE Signal Process. Magn. 27, 76–88 (2010)

    Article  ADS  Google Scholar 

  13. M. Elad, B. Matalon, J. Shtok, M. Zibulevsky, Proc. SPIE 6701, Wavelets XII, 670102 (2007). doi:10.1117/12.741299

  14. M. Elad, B. Matalon, M. Zibulevsky, Appl. Comput. Harmon. Anal. 23(3), 346–367 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Blumensath, Signal Process. 92, 752–756 (2012)

    Article  Google Scholar 

  16. G.A. Wright, IEEE Signal Process. Magn. 14, 56–66 (1997)

    Article  ADS  Google Scholar 

  17. P. Mansfield, J. Phys. C Solid State 10(3), L55–L58 (1977)

    Article  ADS  Google Scholar 

  18. H. Omer, R. Dickinson, Concepts Magn. Reson. A 38A(2), 52–60 (2011)

    Article  Google Scholar 

  19. K.P. Pruessmann, M. Weiger, M.B. Scheidegger, P. Boesiger, Magn. Reson. Med. 42, 952–962 (1999)

    Article  Google Scholar 

  20. J. Shah, I. Qureshi, H. Omer, A. Khaliq, Int. J. Imag. Syst. Tech. 24(3), 203–207 (2014)

    Article  Google Scholar 

  21. A.A. Samsonov, E.G. Kholmovski, D.L. Parker, C.R. Johnson, Magn. Reson. Med. 52(6), 1397–1406 (2004)

    Article  MATH  Google Scholar 

  22. M. Doneva, P. Börnert, H. Eggers, A. Mertins, in Proceedings of Joint Annual Meeting ISMRM- ESMRMB, Stockholm, Sweden, 4851 (2010)

  23. M. Elad, in Sparse and redundant representations: from theory to applications in signal and image processing. (Springer, New York, 2010), pp. 302–304

    Book  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Hammad Omer, Assistant Professor, Department of Electrical Engineering, COMSATS Institute of Information Technology, Islamabad, Pakistan, for providing the dataset of the real MRI scans of his head taken at St. Mary’s Hospital, London UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jawad Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, J., Qureshi, I.M., Proano, J. et al. Compressively Sampled MR Image Reconstruction Using Hyperbolic Tangent-Based Soft-Thresholding. Appl Magn Reson 46, 837–851 (2015). https://doi.org/10.1007/s00723-015-0683-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-015-0683-2

Keywords

Navigation