Skip to main content
Log in

Multinuclear NMR Study of Structure and Mobility in Cyclic Model Lithium Conducting Systems

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The transport of the lithium ions is the basis of lithium ion conductivity of currently used electrolytes. Understanding how the transport of lithium ions within the matrix is influenced by the interactions with solvating moieties is needed to improve their performance. Along these lines well-defined model compounds based on cyclotriphosphazene (CTP) and hexaphenylbenzene (HPB) cores, bearing side groups of ethylene carbonate, a common solvent for lithium salts used as electrolytes in Li-ion batteries (Thielen et al. Chem. Mater, 23, 2120, 2011) and blended with different amounts of Lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) have been studied by multinuclear nuclear magnetic resonance (NMR) spectroscopy. The local dynamics of the matrix was probed by 1H and 31P NMR, while the local dynamics of the Li+ cations was unraveled by 7Li and 13C NMR. Transport of both ions was studied by pulsed-field gradient (PFG) NMR. Based on the different temperature dependences of the dynamics the bulk ion transport is not attributed to local dynamics, but to translational diffusion best characterized by PFG NMR. Although the glass transition temperatures of the blends are low, their conductivities are only in the range of typical polymer electrolytes. The results of NMR spectroscopy are in accord with the conjecture that the coordination between the cyclic carbonate functionality and the Li+-ion is too tight to allow for fast ion dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)

    Article  Google Scholar 

  2. W. van Schalkwijk, B. Scrosati (eds.), Advances in Lithium-Ion Batteries (Kluwer Academic/Plenum, New York, 2002)

    Google Scholar 

  3. K. Xu, Chem. Rev. 104, 4303 (2004)

    Article  Google Scholar 

  4. J. Thielen, W.H. Meyer, K. Landfester, Chem. Mater. 23, 2120–2129 (2011)

    Article  Google Scholar 

  5. G.R. Strobl, The Physics of Polymers (Springer, Berlin, 1996)

    Book  Google Scholar 

  6. J. Thielen, Thesis, University of Mainz, http://www.ubm.opus.hbz-nrw.de/volltexte/2011/2852/pdf/doc.pdf

  7. H.R. Allcock, Chemistry and Applications of Polyphosphazenes (Wiley, New York, 2003), p. 528

    Google Scholar 

  8. N. Kaskhedikar, M. Burjanadze, Y. Karatas, H.D. Wiemhöfer, Solid State Ionics 177, 3129 (2006)

    Article  Google Scholar 

  9. L. Jimenez-Garcia, A. Kaltbeitzel, W. Pisula, J.S. Gutmann, M. Klapper, K. Muellen, Angew. Chem. Int. Ed. 48, 9951 (2009)

    Article  Google Scholar 

  10. J. Britz, W.H. Meyer, G. Wegner, Macromolecules 40, 7558 (2007)

    Article  ADS  Google Scholar 

  11. K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic Press, London, 1994)

    Google Scholar 

  12. M.R. Hansen, R. Graf, H.W. Spiess, Acc. Chem. Res. 46, 1996 (2013)

    Article  Google Scholar 

  13. C.P. Grey, N. Dupré, Chem. Rev. 104, 4493 (2004)

    Article  Google Scholar 

  14. K. Ogata, Salager, C.J. Kerr, A.E. Fraser, C. Ducati, A.J. Morris, S. Hofmann, C.P. Grey, Nature Commun. 5, 3217 (2014)

    Article  ADS  Google Scholar 

  15. T.L. Spencer, N.W. Plagos, D.H. Brouwer, G.R. Goward, Phys. Chem. Chem. Phys. 16, 2515 (2014)

    Article  Google Scholar 

  16. R. Kimmich, NMR: Tomography, Diffusometry, Relaxometry (Springer, Berlin, 1997)

    Book  Google Scholar 

  17. S.A. Krachkovskiy, A.D. Pauric, I.C. Halalay, G.R. Goward, J. Phys. Chem. Lett. 4, 3940 (2013)

    Article  Google Scholar 

  18. U. Boehme, U. Scheler, Chem. Phys. Lett. 435, 342 (2007)

    Article  ADS  Google Scholar 

  19. J. Muntean, L. Stock, R. Botto, J. Magn. Reson. 76, 540 (1988)

    ADS  Google Scholar 

  20. B. Langer, I. Schnell, H.W. Spiess, A.-R. Grimmer, J. Magn. Reson. 138, 182 (1999)

    Article  ADS  Google Scholar 

  21. M. Kunze, Y. Karatas, H.-D. Wiemhöfer, H. Eckert, M. Schönhoff, Phys. Chem. Chem. Phys. 12, 6844 (2010)

    Article  Google Scholar 

  22. M. Kunze, Y. Karatas, H.-D. Wiemhöfer, M. Schönhoff, Macromolecules 45, 8328 (2012)

    Article  ADS  Google Scholar 

  23. L. van Wüllen, T.K.-J. Köster, H.-D. Wiemhöfer, N. Kashkedikar, Chem. Mater. 20, 7399 (2008)

    Article  Google Scholar 

  24. N. Bloembergen, E.M. Purcell, R.V. Pound, Phys. Rev. 73, 679 (1948)

    Article  ADS  Google Scholar 

  25. Ü. Akbey, S. Granados-Focil, B. Coughlin, R. Graf, H.W. Spiess, J. Phys. Chem. B 113, 9151 (2009)

    Article  Google Scholar 

  26. L. Yang, A. Xiao, B.L. Lucht, J. Mol. Liqu. 154, 131 (2010)

    Article  Google Scholar 

  27. Y. Karatas, N. Kaskhedikar, M. Burjanadze, H.-D. Wiemhöfer, Macromol. Chem. Phys. 207, 419 (2006)

    Article  Google Scholar 

  28. W. Gorecki, W. Jeannin, E. Belorizky, C. Roux, M. Armand, J. Phys.: Condens. Matter 7, 6823 (1995)

    ADS  Google Scholar 

  29. K. Hayamizu, Y. Aihara, W.S. Price, J. Chem. Phys. 113, 4785 (2000)

    Article  ADS  Google Scholar 

  30. H.W. Spiess, Macromolecules 43, 5479 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank W. H. Meyer and G. Brunklaus for helpful discussions of different aspects of this work. We further thank Sebastian Jeremias for practical assistance with the PFG NMR experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans Wolfgang Spiess.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thielen, J., Kins, C.F., Schönhoff, M. et al. Multinuclear NMR Study of Structure and Mobility in Cyclic Model Lithium Conducting Systems. Appl Magn Reson 45, 1063–1073 (2014). https://doi.org/10.1007/s00723-014-0588-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0588-5

Keywords

Navigation