Skip to main content
Log in

EPR Detection of Possible Superparamagnetic Polyiron Nanoparticles and Free Radicals in the Blood Serum of Patients with Homozygous β-Thalassemia

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In homozygous β-thalassemia blood transfusions and chelating therapy cannot prevent completely hemochromatosis. Labile ‘free’ iron forms in blood serum and evolves into insoluble inorganic deposits in tissues. Using X-band EPR at 163 K, we detected a new species of polynuclear iron in serum of some thalassemic patients. It showed a broad g < 2 line and an unusually high dynamic magnetic susceptibility due to ordered magnetism, which was detected by a decreased Q factor of the resonant cavity at B = 0. To explain the ordered magnetism and large line, we postulated either ferri- or ferromagnetic nanocrystals with non-zero residual magnetization, or superparamagnetic nanoparticles with antiferromagnetic ordering and incomplete spin compensation—or maybe both. While the results were not sufficient to check the first hypothesis, they are fully consistent with the second. The new species is similar to, but distinct from, ferritin’s mineral core, as it does not correlate with the ferritin concentration. The spectra suggest particles of ~1.7–4.1 nm diameter, plausibly containing ~40–300 Fe(III) ions coupled by oxygen bridges, but further confirmation is needed. The nanoparticles apparently formed a hydrophilic colloidal dispersion, being probably decorated with hydrophilic small organic molecules. They are postulated to form by heterogeneous nucleation around the ‘free’ iron, then aggregate in chains and eventually precipitate in the tissues. Stable free radicals detected in serum were tentatively identified as the hydroxyperoxyl and monodehydroascorbate radicals forming adducts with Cu(II)-ceruloplasmin, and the Hb–porphyrin–Fe(IV)=O oxoferryl radical probably stabilized on haptoglobin. They are consistent with oxy-radicals promoted both by ‘free’ iron and by polyiron nanoparticles. Potential medical applications like early assessment of patient’s evolution trend toward hemochromatosis and monitoring of the transfusional suppression of endogenous erythrocyte synthesis are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. This sample was not included in subgroup I because it showed ordered magnetism only after 2 years and not after 1 month like those of subgroup I.

References

  1. S.S. Eaton, G.R. Eaton, L.J. Berliner, ed. by in Biological Magnetic Resonance, vol. 23 (Springer, Berlin, 2005)

  2. A.J. Hoff, Advanced EPR—applications in biology and biochemistry (Elsevier, New York, 1989)

    Google Scholar 

  3. G. Hanson, L. Berliner, ed. by in Biological Magnetic Resonance, vol. 28 (Springer, Berlin, 2009)

  4. R.G. Saifutdinov, L.I. Larina, T.I. Vakul’skaya, M.G. Voronkov, Electron paramagnetic resonance in biochemistry and medicine (Kluver Academic/Plenum Publishers, New York, 2001)

  5. H.M. Swartz, S. Ambegaonkar, W. Antholine, M. Konieczny, C. Mailer, Ann. N. Y. Acad. Sci. 222, 989–1009 (1973)

  6. N. Khan, B.B. Williams, H.M. Swartz, Appl. Magn. Reson. 30, 185–199 (2006)

  7. M. Bomba, S. Camagna, S. Cannistraro, P.L. Indovina, Physiol. Chem. Phys. 9, 175 (1977)

    Google Scholar 

  8. M. Foster, A. Dawson, T. Pocklington, L. Fell, Clin. Radiol. 28, 23 (1977)

    Google Scholar 

  9. H. Neubacher, W. Lohmann, Electron-spin resonance spectroscopy, in Biophysics (W. Hoppe, W. Lohmann, H. Markl, H. Ziegler, editors) (Springer, Berlin, 1983), pp. 178–189

  10. H. Yamamoto, Jpn. Circulat. J. 35, 1257–1258 (1971)

    Google Scholar 

  11. T.D. Smith, J.R. Pilbrow, in Biological Magnetic Resonance 2, ed. by L.J. Berliner, J. Reuben (Plenum Press, New York, 1980), pp. 85–168

  12. R. Cammack, C.E. Cooper, Methods Enzymol. 227, 353–384 (1993)

    Google Scholar 

  13. R. Krzyminiewski, Z. Kruczyński, B. Dobosz, A. Zając, A. Mackiewicz, E. Leporowska, S. Folwaczna, Appl. Magn. Reson. 40, 321–330 (2011)

    Google Scholar 

  14. I. Ortalli, G. Pedrazzi, G. Schianchi, Nuovo Cimento 10, 881–885 (1988)

    Google Scholar 

  15. A. Cao, R. Galanello, Beta thalassemia—gene reviews (2010), NCBI Bookshelf, http://www.ncbi.nlm.nih.gov/books/NBK1426/

  16. D. Weatherall, J.B. Clegg, The Thalassemia Syndrome, 2nd edn. (Blackwell Scientific, Oxford, 1973)

    Google Scholar 

  17. E.A. Preoteasa, G. Schianchi, D.C. Giori, O.G. Duliu, A. Butturini, G. Izzi, Dig. J. Nanomater. Biostruct. 8, 469–499 (2013)

    Google Scholar 

  18. S. Cannnistraro, P.L. Indovina, L. Sportelli, Z. Naturforsch. 35C, 193–196 (1980)

    Google Scholar 

  19. S. Cannistraro, Stud. Biophys. 98, 133–145 (1983)

    Google Scholar 

  20. G. Musci, M.C. Bonaccorsi di Patti, P. Carlini, L. Calabrese, Eur. J. Biochem. 210, 635–640 (1992)

    Google Scholar 

  21. C.A. Finch, M. Huebens, N. Engl. J. Med. 306, 1520–1528 (1982)

    Google Scholar 

  22. J.W. Halliday, L.W. Powell, Semin. Hematol. 19, 42–53 (1982)

    Google Scholar 

  23. A. Jacobs, in Iron in Biochemistry and Medicine, ed. by A. Jacobs, M. Worwood (Academic Press, London, 1980), pp. 427–459

  24. J.N. Rimbert, F. Dumas, G. Richardot, C. Kellershohn, Hyperfine Interact. 29, 1439–1442 (1986)

    ADS  Google Scholar 

  25. M. Mulligan, B. Althaus, M.C. Linder, Int. J. Biochem. 18, 791–798 (1986)

    Google Scholar 

  26. C. Hershko, Br. J. Haematol. 66, 149–151 (1987)

    Google Scholar 

  27. R. Böhnke, B.F. Matzanke, Biometals 8, 223–230 (1995)

    Google Scholar 

  28. D.L. Bakkeren, C.M.H. de Jeu-Jaspers, C. van der Heul, H.G. van Ejik, Int. J. Biochem. 17, 925–930 (1985)

    Google Scholar 

  29. C.G.D. Morley, A. Bezkorovainy, IRCS Med. Sci. 11, 1106–1107 (1983)

    Google Scholar 

  30. M. Grootveld, J.D. Bell, B. Halliwell, O.I. Aruoma, A. Bomford, P. Sadler, J. Biol. Chem. 264, 4417–4422 (1989)

    Google Scholar 

  31. R.W. Evans, R. Rafique, A. Zarea, C. Rapisarda, R. Cammack, P.J. Evans, J.B. Porter, R.C. Hider, J. Biol. Inorg. Chem. 13, 57–74 (2008)

    Google Scholar 

  32. F.N. Al-Refaie, D.G. Wickens, B. Wonke, G.J. Kontoghiorghes, A.V. Hoffbrand, Br. J. Haematol. 82, 431–436 (1992)

    Google Scholar 

  33. E. Mosiniewicz-Szablewska, A. Ślawska-Waniewska, K. Świątek, N. Nedelko, J. Galązka-Friedman, A. Friedman, Appl. Magn. Reson. 24, 429–435 (2003)

    Google Scholar 

  34. S.V. Yurtaeva, V.N. Efimov, N.I. Silkin, A.A. Rodionov, M.V. Burmistrov, A.V. Panov, A.A. Moroshek, Appl. Magn. Reson. 42, 299–311 (2012)

    Google Scholar 

  35. E. Wajnberg, L.J. El-Jaick, M.P. Linhares, D.M.S. Esquivel, J. Magn. Reson. 153, 69–74 (2001)

    ADS  Google Scholar 

  36. M. Weir, T.J. Peters, J.F. Gibson, Biochim. Biophys. Acta 828, 298 (1985)

    Google Scholar 

  37. B. Halliwell, J.M.C. Guttreridge, Methods Enzymol. 186, 1–85 (1990)

    Google Scholar 

  38. M. Wagstaff, S.W. Peters, B.M. Jones, A. Jacobs, Br. J. Haematol. 67, 566–567 (1986)

    Google Scholar 

  39. B.R. Bacon, R.S. Britton, Chem. Biol. Interact. 70, 183–226 (1989)

    Google Scholar 

  40. W. Schneider, I. Erni, in The Biochemistry and Physiology of Iron, ed. by P. Saltman, J. Hegenauer (Elsevier, New York, 1982). pp 121–126

  41. A. Jacobs, Blood 50, 433 (1977)

  42. R. Massart, V. Cabuil, J. Chem. Phys. 84, 967–973 (1987)

    Google Scholar 

  43. A. Blank, H. Levanon, Spectrochim. Acta A 56, 363–371 (2000)

    ADS  Google Scholar 

  44. S.A. Al’tshuler, B.M. Kozyrev, Electron Paramagnetic Resonance (Academic Press, New York, 1964); Elektronniy Paramagnitniy Rezonans [in Russian] (State Press for Physico-Mathematical Sciences, Moskva, 1961)

  45. G.E. Pake, Paramagnetic Resonance (W.A. Benjamin, New York, 1962)

    Google Scholar 

  46. I. Ursu, La Resonance Paramagnetique Electronique (Dunod, Paris, 1968)

    Google Scholar 

  47. D.J.E. Ingram, Free Radicals as Studied by Electron Spin Resonance (Butterworth, London, 1958)

    Google Scholar 

  48. D.J.E. Ingram, Biological and Biochemical Applications of Electron Spin Resonance (Adam Hilger, London, 1969)

    Google Scholar 

  49. S. Saini, R.B. Frankel, D.D. Stark, J.T. Ferrucci Jr, Am. J. Radiol. 150, 736–743 (1988)

    Google Scholar 

  50. C. Kittel, Introduction to Solid State Physics, 4th edn. (Wiley, New York, 1971)

    Google Scholar 

  51. L.G. Abraçado, D.M.S. Esquivel, E. Wajnberg, J. Biol. Phys. 38, 607–621 (2012)

    Google Scholar 

  52. W. Wiltschko, R. Wiltschko, J. Comp. Physiol. A 191, 675–693 (2005)

    Google Scholar 

  53. S. Johnsen, K.J. Lohmann, Nat. Rev. Neurosci. 6, 703–712 (2005)

    Google Scholar 

  54. O. Özdemir, D.J. Dunlop, B.M. Moskowitz, Earth Planet. Sci. Lett. 194, 343–358 (2002)

    ADS  Google Scholar 

  55. G.F. Goya, T.S. Berquó, F.C. Fonseca, M.P. Morales, J. Appl. Phys. 94, 3520–3528 (2003)

    ADS  Google Scholar 

  56. T.G. St. Pierre, D.P.E. Dickson, D.H. Jones, Hyperfine Interact. 42, 917–920 (1988)

    ADS  Google Scholar 

  57. T.G. St. Pierre, D.P.E. Dickson, J. Webb, K.S. Kim, D.J. Macey, S. Mann, Hyperfine Interact. 29, 1427–1430 (1986)

    ADS  Google Scholar 

  58. M.R. Cheesman, N.E. Le Brun, F.H.A. Kadir, A.J. Thomson, G.R. Moore, S.C. Andrews, J.R. Guest, P.M. Harrison, J.M.A. Smith, S.J. Yewdall, Biochem. J. 292, 47–56 (1993)

    Google Scholar 

  59. R. Miao, M. Martinho, J. Garber Morales, H. Kim, E.A. Ellis, R. Lill, M.P. Hendrich, E. Münck, P.A. Lindahl, Biochemistry 47, 9888–9899 (2008)

    Google Scholar 

  60. E. Wajnberg, D. Acosta-Avalos, L.J. El-Jaick, L. Abraçado, J.L.A. Coelho, A.F. Bakuzis, P.C. Morais, D.M.S. Esquivel, Biophys. J. 78, 1018–1023 (2000)

    Google Scholar 

  61. E. Mosiniewicz-Szablewska, M. Safarikova, I. Safarik, J. Nanosci. Nanotech. 10, 2531–2536 (2010)

    Google Scholar 

  62. A. Slawska-Waniewska, E. Mosiniewicz-Szablewska, N. Nedelko, J. Galazka-Friedman, A. Friedman, J. Magn. Magc Mater. 272, 2417–2419 (2004)

    ADS  Google Scholar 

  63. M. Sakata, T. Kawasaki, T. Shibue, H. Namiki, Biophysics 6, 53–57 (2010)

    Google Scholar 

  64. P.C. Morais, M.C.F.L. Lara, K. Skeff Neto, Phil. Mag. Lett. 55, 181–183 (1987)

  65. I.N. Levine, Physical Chemistry, 5th edn. (McGraw-Hill, Boston, 2001), p. 955

    Google Scholar 

  66. K.L. Taft, C. Papaefthymiou, S.J. Lippard, Science 259, 1302–1305 (1993)

    ADS  Google Scholar 

  67. K. Hegetschweiler, H. Schmalle, H.M. Streit, W. Schneider, Inorg. Chem. 29, 3625–3627 (1990)

    Google Scholar 

  68. S.V. Vonsovskii, Ferromagnetic Resonance, in The Great Soviet Encyclopedia, 3rd edn. (Moscow, 1970–1979)

  69. C. Krebs, J.C. Price, J. Baldwin, L. Saleh, M.T. Green, J. Martin Bollinger Jr, Inorg. Chem. 44, 742–757 (2005)

    Google Scholar 

  70. S. Mann, J.V. Bannister, R.J.P. Williams, J. Mol. Biol. 188, 225–232 (1986)

    Google Scholar 

  71. A.K. Powell, in: Comprehensive Coordination Chemistry II, ed. by L. Que Jr., W.B. Tolman (Elsevier, New York, 2005), pp. 169–194

  72. A.J.P. Meyer, G. Asch, J. Appl. Phys. 32, S330 (1961)

    ADS  Google Scholar 

  73. S.V. Vonsovskii, Magnetism (Wiley, New York, 1974); Magnetizm (Nauka, Moskva, 1971)

  74. J.S. Griffith, in Molecular Biophysics, ed. by B. Pullman, M. Weissbluth (Academic Press, New York, 1965), pp. 191–203

  75. Y.N. Bataiev, Ferromagnetic resonance study of spintronics materials, Dissertation, Ohio State Univ, 2008

  76. V. Kambersky, B. Heinrich, D. Fraitova, Phys. Lett. 23, 26 (1966)

    ADS  Google Scholar 

  77. C. Yang, A. Meagher, B.H. Huynh, D.E. Sayers, E.C. Theil, Biochemistry 26, 497–503 (1987)

    Google Scholar 

  78. N.D. Chasteen, P.M. Harrison, J. Struct. Biol. 126, 182–194 (1999)

    Google Scholar 

  79. N. Gálvez, B. Fernández, P. Sánchez, R. Cuesta, M. Ceolín, M. Clemente-León, S. Trasobares, M. López-Haro, J.J. Calvino, O. Stéphan, J.M. Domínguez-Vera, J. Am. Chem. Soc. 130, 8062–8068 (2008)

    Google Scholar 

  80. C. Quintana, J.M. Cowley, C. Marhic, J. Struct. Biol. 147, 166–178 (2004)

    Google Scholar 

  81. M.A. Daniele, M.L. Shaughnessy, R. Roeder, A. Childress, Y.P. Bandera, S. Foulger, ACS Nano 7, 203–213 (2013)

    Google Scholar 

  82. M. Price, J.F. Gibson, J. Biol. Chem. 247, 8031–8035 (1972)

    Google Scholar 

  83. A.S. Yang, B.J. Gaffney, Biophys. J. 51, 55–67 (1987)

    ADS  Google Scholar 

  84. F.R. Van Leeuwen, F.J.M. Zuyderhoudt, B.F. Van Gelder, J. Van Gool, Biochim. Biophys. Acta 500, 304–309 (1977)

    Google Scholar 

  85. I. Neudecker, G. Woltersdorf, B. Heinrich, T. Okuno, G. Gubbiotti, C.H. Back, J. Magn. Magn. Mater. 307, 148–156 (2006)

    ADS  Google Scholar 

  86. V.N. Popok, Rev. Adv. Mater. Sci. 36, 1–12 (2014)

    Google Scholar 

  87. K. Baberschke, in Handbook of Magnetism and Advanced Magnetic Materials, ed. by H. Kronmüller, S. Parkin, Novel Techniques for Characterizing and Preparing Samples, vol. 3 (Wiley, New York, 2007)

  88. M. Zomack, K. Baberschke, Surf. Sci. 178, 618 (1986)

    ADS  Google Scholar 

  89. M.D. Coutinho, L.C.M. Miranda, S.M. Rezende, Revista Brasileira de Física 4, 399–410 (1974)

    Google Scholar 

  90. V.K. Sharma, F. Waldner, J. Appl. Phys. 48, 4298 (1977)

    ADS  Google Scholar 

  91. R.W. Chantrell, A. Bradbury, J. Popplewell, S.W. Charles, J. Appl. Phys. 53, 2742 (1982)

    ADS  Google Scholar 

  92. J. Kind, U.J. van Raden, I. Garcıa-Rubio, A.U. Gehring, Geophys. J. Int. 191, 51–63 (2012)

    ADS  Google Scholar 

  93. R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, Cambridge, 1985)

    Google Scholar 

  94. C.N. Marin, I. Mãlãescu, Rom. J. Phys. 50, Nos. 7–8, 785–793 (2005)

  95. A.S. Teja, P.-Y. Koh, Prog. Cryst. Growth Charact. Mater. 55, 22–45 (2009)

    Google Scholar 

  96. E.A. Preoteasa, M. Salagean, A. Pantelica, D. Plostinaru, B. Constantinescu, S. Berceanu, J. Radioanal. Nucl. Chem. Artic. 151, 261–270 (1991)

    Google Scholar 

  97. A. Kalafoutis, N. Stratakis, E. Diskakis, A. Koutselines, Clin. Biochem. 13, 273 (1980)

    Google Scholar 

  98. E.A. Preoteasa, I. Ionescu, Nutr. Suppl. 11, 546–550 (1995)

    Google Scholar 

  99. W. Lemsaddek, I. Picanco, F. Seuanes, L. Mahmal, S. Benchekroun, M. Khattab, P. Nogueira, L. Osorio-Almeida, Am. J. Hematol. 73, 161–168 (2003)

    Google Scholar 

  100. R.J. Ward, M.H. Ramsey, D.P.E. Dickson, A. Florence, R.R. Crichton, T.J. Peters, S. Mann, Eur. J. Biochem. 209, 847–850 (1992)

    Google Scholar 

  101. M. Younes, I. Eberhardt, R. Lemoine, J. Appl. Toxicol. 9, 103–108 (1989)

    Google Scholar 

  102. A. Plonka, D. Metodiewa, A. Zgirski, M. Hilewicz, W. Leyko, Biochem. Biopys. Res. Commun. 95, 978–984 (1980)

    Google Scholar 

  103. L.N. Grinberg, O. Shalev, A. Goldfarb, E.A. Rachmilewitz, Biochim. Biophys. Acta 1139, 248–250 (1992)

    Google Scholar 

  104. B.H.J. Bielski, D.E. Cabelli, Int. J. Radiat. Biol. 59, 291–319 (1991)

    Google Scholar 

  105. I. Fridovich, Ann. Rev. Pharmacol. Toxicol. 23, 239–257 (1988)

    Google Scholar 

  106. D. Cordischi, V. Indovina, M. Occhiuzi, J. Chem. Soc. Faraday Trans. 1, 883–892 (1978)

    Google Scholar 

  107. W. Lohmann, J. Schreiber, W. Greulich, W. Strobelt, E. Müller, Collect. Phenom. 3, 245–258 (1981)

    Google Scholar 

  108. A. Bendich, L.J. Machlin, O. Scandurra, Adv. Free Rad. Biol. Med. 2, 419–444 (1986)

    Google Scholar 

  109. J. Kanner, S. Harel, Lipids 20, 625–628 (1985)

    Google Scholar 

  110. D. Galaris, E. Cadenas, P. Hochstein, Arch. Biochem. Biophys. 273, 497–504 (1989)

    Google Scholar 

  111. G.R. Buettner, B.A. Jurkewicz, Free Rad. Biol. Med. 14, 49–55 (1993)

    Google Scholar 

  112. B.H.J. Bielski, in Ascorbic Acid: Chemistry, Metabolism, and Uses, ed. by P.A. Seib, B.M. Tolbert (American Chemical Society, Washington, 1982), pp. 81–100

  113. S. Ahmad (ed.), Oxidative Stress and Antioxidant Defenses in Biology (Chapman and Hall, New York, 1995), pp. 238–272

    Google Scholar 

  114. C.H. Foyer, B. Halliwell, Planta 133, 21–25 (1976)

    Google Scholar 

  115. B.J. Reeder, F. Cutruzzola, M.G. Bigotti, N.J. Watmough, M.T. Wilson, IUBMB Life 59, 477–489 (2007)

    Google Scholar 

  116. R. Silaghi-Dumitrescu, B.J. Reeder, P. Nicholls, C.E. Cooper, M.T. Wilson, Biochem. J. 403, 391–395 (2007)

    Google Scholar 

  117. H.-P. Hersleth, T. Uchida, Å.K. Røhr, T. Teschner, V. Schünemann, T. Kitagawa, A.X. Trautwein, C.H. Görbitz, K.K. Andersson, J. Biol. Chem. 282, 23372–23386 (2007)

    Google Scholar 

  118. C.E. Cooper, D.J. Schaer, P.W. Buehler, M.T. Wilson, B.J. Reeder, G. Silkstone, D.A. Svistunenko, L. Bulow, A.I. Alayash, Antiox. Redox Signal. 18, 2264–2273 (2013)

    Google Scholar 

  119. D.A. Svistunenko, R.P. Patel, S.V. Voloshchenko, M.T. Wilson, J. Biol. Chem. 272, 7114–7121 (1997)

    Google Scholar 

  120. M. Uyeda, J. Peisach, Biochemistry 20, 2028–2035 (1981)

    Google Scholar 

  121. C. Rice-Evans, G. Okunade, R. Khan, Free Rad. Res. Commun. 7, 45–54 (1989)

    Google Scholar 

  122. F.J. Romero, D. Ordonez, A. Arduini, E. Cardenas, J. Biol. Chem. 267, 1680–1688 (1992)

    Google Scholar 

  123. S.S. Bhagat, P.D. Sarkar, A.N. Suryakar, R.A. Ghone, R.K. Padalkar, A.C. Karnik, S.M. Patil, S. Tarde, Int. J. Health Sci. Res. 2, 36–41 (2012)

  124. B.J. Reeder, R.C. Hider, M.T. Wilson, Free Rad. Biol. Med. 44, 264–273 (2008)

    Google Scholar 

  125. E.A. Rachmilewitz, B.H. Lubin, S.B. Shohet, Blood 47, 495–505 (1976)

    Google Scholar 

  126. I. Kahane, S. Shifter, E.A. Rachmilewitz, FEBS Lett. 85, 267 (1978)

    Google Scholar 

  127. M.R. Prasad, R.M. Engelman, R.M. Jones, D.K. Das, Biochem. J. 263, 731–736 (1989)

    Google Scholar 

  128. G.R. Buettner, Free Rad. Res. Commun. 19(Suppl. 1), S79–S87 (1993)

    Google Scholar 

Download references

Acknowledgments

E.A.P. and G.S. express their compassionate feelings for the disappearance of Prof. D. Camillo Giori (Parma, Italy), departed before the preparation of this article. They thank Dr. Anna Butturini (Los Angeles, CA) and Prof. Giancarlo Izzi (Parma) for providing the blood samples, access to the clinical records of the patients under study, and useful discussions. E.A.P. acknowledges the pertinent suggestions from Prof. Octavian G. Duliu and Prof. I.N. Mihailescu (Bucharest). E.A.P. undertook the experimental part of this work with the support of ICTP Programme for Training and Research in Italian Laboratories (TRIL), Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen A. Preoteasa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preoteasa, E.A., Schianchi, G. & Giori, D.C. EPR Detection of Possible Superparamagnetic Polyiron Nanoparticles and Free Radicals in the Blood Serum of Patients with Homozygous β-Thalassemia. Appl Magn Reson 45, 537–571 (2014). https://doi.org/10.1007/s00723-014-0540-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-014-0540-8

Keywords

Navigation