Skip to main content
Log in

Continuous-Wave and Time-Resolved Electron Paramagnetic Resonance Study of Dimerized Aza-Crown Copper Porphyrins

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The dimerization of 5-(4’-(aza-15-crown-5)-phenyl) copper porphyrin (CuP) upon the addition of the K(SCN) salt to a solution of the CuP monomer has been proven by electron paramagnetic resonance (EPR). The magnetic resonance parameters of the CuP monomer, the exchange interaction parameter, J = +0.25 cm−1, and the Cu–Cu distance of the CuP dimer have been determined by comparing the experimental continuous-wave EPR spectra with the results of the numerical calculations. The photoexcited states have been studied in the time-resolved EPR experiments. It has been shown that the time-resolved EPR spectra of the dimerized porphyrins can be presented as a sum of two components that represent the spectra derived by integrating the dataset in the time windows of 1.1–1.3 and 2.1–2.3 μs. To describe the spectrum in the time window of 2.1–2.3 μs, it is assumed that there is an essential contribution to the signal from the excited state of the supramolecule, which is formed by the interaction between the photoexcited porphyrin in the quartet state and the neighboring non-excited porphyrin in the ground state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.M. Kadish, K.M. Smith, R. Guilard (eds.), The Porphyrin Handbook, vol 1–20 (Acad. Press, New York, 2000–2003)

  2. D. Gust, Nature 386, 21 (1997)

    Article  ADS  Google Scholar 

  3. J.A.A.W. Elemans, R. van Hameren, R.J.M. Notle, A.E. Rowan, Adv. Mater. 18, 1251–1266 (2006)

    Article  Google Scholar 

  4. N. Krauss, W. Hinrichs, I. Witt, P. Fromme, W. Pritzkow, Z. Dauter, C. Betzel, K.S. Wilson, H.T. Witt, W. Saenger, Nature 361, 326–331 (1993)

    Article  ADS  Google Scholar 

  5. G. McDermott, S.M. Prince, A.A. Freer, A.M. Hawthornthwaite-Lawless, M.Z. Papiz, R.J. Cogdell, N.W. Isaacs, Nature 374, 517–521 (1995)

    Article  ADS  Google Scholar 

  6. P. Jordan, P. Fromme, H.-T. Witt, O. Klukas, W. Saenger, N. Kraub, Nature 411, 909–917 (2001)

    Article  ADS  Google Scholar 

  7. A.P.S. Samuel, D.T. Co, C.L. Stern, M.R. Wasielewski, J. Am. Chem. Soc. 132, 8813–8815 (2010)

    Article  Google Scholar 

  8. T. Honda, T. Nakanishi, K. Ohkubo, T. Kojima, S. Fukuzumi, J. Phys. Chem. C 114(33), 14290–14299 (2010)

    Article  Google Scholar 

  9. K. Mobius, W. Lubitz, A. Savitsky, Appl. Magn. Reson. 41(2–4), 113–131 (2011)

    Article  Google Scholar 

  10. P.K. Poddutoori, N. Zarrabi, A.G. Moiseev, R. Gumbau-Brisa, S. Vassiliev S, A.van der Est, Chemistry 19(9), 3148–61 (2013). doi:10.1002/chem.201202995

  11. G.M. Mamardashvili, NZh Mamardashvili, O.I. Koifman, Usp. Khimii 77(1), 60–74 (2008)

    Google Scholar 

  12. V. Thanabal, V. Krishnan, Inorg. Chem. 21, 3606–3613 (1982)

    Article  Google Scholar 

  13. A. Yu. Tsivadze, Chem. Comput. Simul. Butlerov Commun. 9, 17–24 (2002)

  14. P. Beletskaya, V.S. Tyurin, A.Y. Tsivadze, R. Guilard, C. Stern, Chem. Rev. 109, 1659–1713 (2009)

    Article  Google Scholar 

  15. R. Ao, L. Kummerl, D. Haarer, Adv. Mater. 7, 495 (1995)

    Article  Google Scholar 

  16. R.W. Wagner, J.S. Lindsey, J. Am. Chem. Soc. 118, 3996 (1996)

    Article  Google Scholar 

  17. S.C. Jeoung, D. Kim, S.J. Hahn, S.Y. Ryu, M. Yoon, J. Phys. Chem. A 102, 315 (1998)

    Article  Google Scholar 

  18. M. Hugerat, A. van der Est, E. Ojadi, L. Biczok, H. Linschitz, H. Levanon, D. Stehlik, J. Phys. Chem. 100, 495–500 (1996)

    Article  Google Scholar 

  19. M. Asano-Someda, A. van der Est, U. Kruger, D. Stehlik, Y. Kaizu, H. Levanon, J. Phys. Chem. A 103, 6704–6714 (1999)

    Article  Google Scholar 

  20. M. Asano-Someda, Y. Kaizu, Inorg. Chem. 38, 2303–2311 (1999)

    Article  Google Scholar 

  21. N. Toyama, M. Asano-Someda, T. Ichino, Y. Kaizu, J. Phys. Chem. A 104, 4857–4865 (2000)

    Article  Google Scholar 

  22. M. Asano-Someda, A. Jinmon, N. Toyama, Y. Kaizu, Inorg. Chim. Acta 324, 347–351 (2001)

    Article  Google Scholar 

  23. A. van der Est, M. Asano-Someda, P. Ragogna, Y. Kaizu, J. Phys. Chem. A 106, 8531–8542 (2002)

    Google Scholar 

  24. M. Asano-Someda, N. Toyama, Y. Kaizu, Appl. Magn. Reson. 23, 393–407 (2003)

    Article  Google Scholar 

  25. V. Rozenshtein, A. Berg, H. Levanon, U. Krueger, D. Stehlik, Y. Kandrashkin, A. van der Est, Isr. J. Chem. 43, 373–381 (2003)

    Article  Google Scholar 

  26. Y. Kandrashkin, M.S. Asano, A. van der Est, Chem. Phys. 8, 2129–2132 (2006)

    Google Scholar 

  27. Y.E. Kandrashkin, M.S. Asano, A. van der Est, J. Phys. Chem. A 110, 9607–9616 (2006)

    Article  Google Scholar 

  28. Y.E. Kandrashkin, M.S. Asano, A. van der Est, J. Phys. Chem. A 110, 9617–9626 (2006)

    Article  Google Scholar 

  29. V.S. Iyudin, YuE Kandrashkin, V.K. Voronkova, V.S. Tyurin, E.N. Kirichenko, Appl. Magn. Reson. 40(1), 75–89 (2009)

    Article  Google Scholar 

  30. E.A. Mikhalitsyna, V.S. Tyurin, I.A. Zamylatskov, V. Khrustalev, I. Beletskaya, Dalton Trans. (2012). doi:10.1039/c2dt30123g

    Google Scholar 

  31. S. Stoll, A. Schweiger, J. Magn. Reson. 178(1), 42–55 (2006)

    Article  ADS  Google Scholar 

  32. Yu. V. Yablokov, V.K. Voronkova, L.V. Mosina, Paramagnitnyi Rezonans Obmennykh Klasterov (Nauka, Moscow, 1988)

  33. V. Thanabal, V. Krishnan, J. Am. Chem. Soc. 104, 3643–3650 (1982)

    Article  Google Scholar 

  34. G.E. Selyutin, A.A. Shklyaev, A.M. Shul’ga, Izv. Akad. Nauk SSSR, Seriya Khimicheskaya, 6, 1331–1336 (1985)

    Google Scholar 

  35. T.D. Smith, J.R. Pilbrow, Coord. Chem. Rev. 13, 173 (1974)

    Article  Google Scholar 

  36. G.M. Larin, V.F. Shul’gin, Russ. J. Inorg. Chem. 51(1), S28–S48 (2006)

    Article  Google Scholar 

  37. V.F. Shul’gin, O.V. Konnik, A.S. Bogomyakov, V.I. Ovcharenko, V.V. Minin, Russ. J. Inorg. Chem. 57(4), 552–556 (2012)

    Article  Google Scholar 

  38. R.L. Ake, M. Gouterman, Theor. Chim. Acta 15, 20 (1969)

    Article  Google Scholar 

  39. M. Asano, Y. Kaizu, N. Kobayashi, J. Chem. Phys. 89, 6567 (1988)

    Article  ADS  Google Scholar 

  40. M. Gouterman, in The Porphyrins, vol. III, ed. by D. Dolphin (Academic Press: New York, 1978), p. 1

  41. C. Corvaja, L. Franco, A. Toffoletti, Appl. Magn. Reson. 7, 257–269 (1994)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Russian Foundation for Basic Research (project nos. 12-03-97078 and 12-03-31294), the President of the Russian Federation (Grant no. NSh-5602.2012) and Division of Physical Sciences, Russian Academy of Sciences (II.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Voronkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandrashkin, Y.E., Iyudin, V.S., Voronkova, V.K. et al. Continuous-Wave and Time-Resolved Electron Paramagnetic Resonance Study of Dimerized Aza-Crown Copper Porphyrins. Appl Magn Reson 44, 967–981 (2013). https://doi.org/10.1007/s00723-013-0461-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-013-0461-y

Keywords

Navigation