Skip to main content
Log in

Evaluation of a Shuttle DNP Spectrometer by Calculating the Coupling and Global Enhancement Factors of l-Tryptophan

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

A liquid state shuttle dynamic nuclear polarization (DNP) spectrometer is presented, featuring several technical modifications that increase stability and improve reproducibility. For the protons of l-tryptophan, the signal enhancement and the DNP spin properties, such as relaxation, were measured and compared with each other. The calculated coupling factors suggest that the proton accessibility for the polarizer molecule has an important influence on the DNP enhancement. In general, short proton spin longitudinal relaxation times without radical reduce the detectable enhancement by decreasing the leakage factor and increasing the relaxation losses during the course of the sample transfer. The usage of a global enhancement factor gives a more complete overview of the capabilities for the described experimental setup. Global enhancements of up to −4.2 for l-tryptophan protons are found compared to pure Boltzmann enhancements of up to −2.4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note that our cavity has a complex inner contour, which distorts the modal field distribution such that the classification in classical TM and TE modes becomes ambiguous. However, due to the close similarity of the distorted modal field to that of classical cavity modes we believe it is justified to retain the classical nomenclature.

References

  1. T. Prisner, W. Kockenberger, Appl. Magn. Reson. 34, 213 (2008)

    Article  Google Scholar 

  2. J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100, 10158 (2003)

    Article  ADS  Google Scholar 

  3. K. Golman, R. Zandt, M. Thanning, Proc. Natl. Acad. USA 103, 11270 (2006)

    Article  ADS  Google Scholar 

  4. S.E. Day, M.I. Kettunen, F.A. Gallagher, D.-E. Hu, M. Lerche, J. Wolber, K. Golman, J.H. Ardenkjaer-Larsen, K.M. Brindle, Nat. Med. 13, 1382 (2007)

    Google Scholar 

  5. R.G. Griffin, T.F. Prisner, Phys. Chem. Chem. Phys. 12, 5737 (2010)

    Article  Google Scholar 

  6. A.B. Barnes, B. Corzilius, M.L. Mak-Jurkauskas, L.B. Andreas, S. Bajaj, Y. Matsuki, M.L. Belenky, J. Lugtenburg, J.R. Sirigiri, R.J. Temkin, J. Herzfeld, R.G. Griffin, Phys. Chem. Chem. Phys. 12, 5861 (2010)

    Article  Google Scholar 

  7. S. Bowen, C. Hilty, Phys. Chem. Chem. Phys. 12, 5766 (2010)

    Article  Google Scholar 

  8. V. Denysenkov, M.J. Prandolini, M. Gafurov, D. Sezer, B. Endeward, T.F. Prisner, Phys. Chem. Chem. Phys. 12, 5786 (2010)

    Article  Google Scholar 

  9. A. Krahn, P. Lottmann, T. Marquardsen, A. Tavernier, M.-T. Türke, M. Reese, A. Leonov, M. Bennati, P. Höfer, F. Engelke, C. Griesinger, Phys. Chem. Chem. Phys. 12, 5830 (2010)

    Article  Google Scholar 

  10. A.W. Overhauser, Phys. Rev. 92, 476 (1953)

    Article  Google Scholar 

  11. A. Abragam, Phys. Rev. 98, 1729 (1955)

    Article  ADS  Google Scholar 

  12. K.H. Hausser, D. Stehlik, Adv. Magn. Reson. 3, 79 (1968)

    Google Scholar 

  13. M. Reese, D. Lennartz, T. Marquardsen, P. Höfer, A. Tavernier, P. Carl, T. Schippmann, M. Bennati, T. Carlomagno, F. Engelke, C. Griesinger, Appl. Magn. Reson. 34, 301 (2008)

    Article  Google Scholar 

  14. M. Reese, M.T. Türke, I. Tkach, G. Parigi, C. Luchinat, T. Marquardsen, A. Tavernier, P. Höfer, F. Engelke, C. Griesinger, J. Am. Chem. Soc. 131, 15086 (2009)

    Article  Google Scholar 

  15. P. Höfer, P. Carl, G. Guthausen, T. Prisner, M. Reese, T. Carlomagno, C. Griesinger, M. Bennati, Appl. Magn. Reson. 34, 393 (2008)

    Article  Google Scholar 

  16. M.-T. Türke, G. Parigi, C. Luchinat, M. Bennati, Phys. Chem. Chem. Phys. 14, 502 (2012)

    Article  Google Scholar 

  17. R.E. Hoffman, Magn. Reson. Chem. 44, 606 (2006)

    Article  Google Scholar 

  18. M. Liu, X. Mao, C. Ye, H. Huang, J.K. Nicholson, J.C. Lindon, J. Magn. Reson. 132, 125 (1998)

    Article  ADS  Google Scholar 

  19. M.-T. Türke, I. Tkach, M. Reese, P. Höfer, M. Bennati, Phys. Chem. Chem. Phys. 12, 5893 (2010)

    Article  Google Scholar 

  20. M. Bennati, C. Luchinat, G. Parigi, M.-T. Türke, Phys. Chem. Chem. Phys. 12, 5902 (2010)

    Article  Google Scholar 

  21. C. Luchinat, G. Parigi, Appl. Magn. Reson. 34, 379 (2008)

    Article  Google Scholar 

  22. D. Sezer, M.J. Prandolini, T.F. Prisner, Phys. Chem. Chem. Phys. 11, 6626 (2009)

    Article  Google Scholar 

  23. M.-T. Türke, M. Bennati, Phys. Chem. Chem. Phys. 13, 3630 (2011)

    Article  Google Scholar 

  24. P. Höfer, G. Parigi, C. Luchinat, P. Carl, G. Guthausen, M. Reese, T. Carlomagno, C. Griesinger, M. Bennati, J. Am. Chem. Soc. 130, 3254 (2008)

    Article  Google Scholar 

  25. L.-P. Hwang, J.H. Freed, J. Chem. Phys. 63, 4017 (1975)

    Article  MathSciNet  ADS  Google Scholar 

  26. H.F. Bennett, R.D. Brown III, S.H. Koenig, H.M. Swartz, Magn. Reson. Med. 4, 93 (1987)

    Article  Google Scholar 

  27. C.F. Polnaszek, R.G. Bryant, J. Chem. Phys. 81, 4038 (1984)

    Article  ADS  Google Scholar 

  28. V. Vitzthum, F. Borcard, S. Jannin, M. Morin, P. Mieville, M.A. Caporini, A. Sienkiewicz, S. Gerber-Lemaire, G. Bodenhausen, ChemPhysChem 12, 2929 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge M.T. Türke for helpful discussion and T. Michael Sabo for carefully reading the manuscript. This work was supported by the Max Planck Society (to M.B. and C.G.) and by Bio-NMR project 261863 (to C.G. and F.E.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Frank Engelke or Christian Griesinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lottmann, P., Marquardsen, T., Krahn, A. et al. Evaluation of a Shuttle DNP Spectrometer by Calculating the Coupling and Global Enhancement Factors of l-Tryptophan. Appl Magn Reson 43, 207–221 (2012). https://doi.org/10.1007/s00723-012-0345-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-012-0345-6

Keywords

Navigation