Skip to main content
Log in

Deprotonation of Transient Guanosyl Cation Radical Catalyzed by Buffer in Aqueous Solution: TR-CIDNP Study

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

The reaction of deprotonation of the guanosyl cation radical formed in the photoinduced reaction of guanosine monophospate (GMP) with triplet 2,2′-dipyridyl-d8 is studied in aqueous solution by time-resolved chemically induced dynamic nuclear polarization (TR-CIDNP). In the course of the cyclic photoreaction, spin-polarized products are generated. Their polarization patterns that reflect the properties at the radical stage are analyzed using high-resolution nuclear magnetic resonance. The identification of transient radicals contributing to the polarization kinetics is based on its sensitivity to the degenerate electron exchange reaction of transient radicals with the parent diamagnetic molecules. Degenerate electron exchange is allowed only for the cation radical and manifests itself in the fast decay of the CIDNP signal in time with the rate of decay proportional to the concentration of parent GMP molecules. Because the formation of the neutral transient radical stops the exchange, the deprotonation changes the CIDNP kinetics from a decaying to a growing one. The rate constant of deprotonation, k d, was obtained from modeling of CIDNP kinetics data with taking into consideration the difference of the CIDNP enhancement factors for neutral and cation guanosyl radicals. The value obtained at pH* 5 for k d = 1 × 106 s−1 is consistent with the proton dissociation constant of the radical (pK a = 3.9). The linear dependence of the deprotonation rate on the buffer concentration is revealed for phosphate, formate, and acetate. Deprotonation is catalyzed by the buffer to a degree that depends on the difference in pK a value of the buffer and the guanosyl cation radical in full accordance with Eigen’s model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Steenken, S.V. Jovanovic, J. Am. Chem. Soc. 119, 617 (1997)

    Article  Google Scholar 

  2. K. Kobayashi, S. Tagawa, J. Am. Chem. Soc. 125, 10213 (2003)

    Article  Google Scholar 

  3. T. Douki, D. Angelov, J. Cadet, J. Am. Chem. Soc. 123, 11360 (2001)

    Article  Google Scholar 

  4. C.J. Burrows, J.G. Muller, Chem. Rev. 98, 1109 (1998)

    Article  Google Scholar 

  5. J.R. Milligan, J.A. Aguilera, O. Hoang, A. Ly, N.Q. Tran, J.F. Ward, J. Am. Chem. Soc. 126, 1682 (2004)

    Article  Google Scholar 

  6. A. Ly, N.Q. Tran, J.F. Ward, J.R. Milligan, Biochemistry 43, 9098 (2004)

    Article  Google Scholar 

  7. A. Ly, S.L. Bandong, N.Q. Tran, K.J. Sullivan, J.R. Milligan, J. Phys. Chem. B 109, 13368 (2005)

    Article  Google Scholar 

  8. J.R. Milligan, N.Q. Tran, A. Ly, J.F. Ward, Biochemistry 43, 5102 (2004)

    Article  Google Scholar 

  9. A. Ly, N.Q. Tran, K. Silliavan, S.L. Bandong, J.F. Ward, J.R. Milligan, Org. Biomol. Chem. 3, 917 (2005)

    Article  Google Scholar 

  10. J.R. Milligan, J.A. Aguilera, A. Ly, O. Hoang, N.Q. Tran, J.F. Ward, Nucleic Acid Res. 31, 6258 (2003)

    Article  Google Scholar 

  11. R.L. Willson, P. Wardman, K.D. Asmus, Nature 252, 323 (1974)

    Article  ADS  Google Scholar 

  12. O.B. Morozova, A.S. Kiryutin, R.Z. Sagdeev, A.V. Yurkovskaya, J. Phys. Chem. B 111, 7439 (2007)

    Article  Google Scholar 

  13. O.B. Morozova, A.S. Kiryutin, A.V. Yurkovskaya, J. Phys. Chem. B 112, 2747 (2008)

    Article  Google Scholar 

  14. S. Steenken, Chem. Rev. 89, 503 (1989)

    Article  Google Scholar 

  15. A. Adhikary, A. Kumar, D. Becker, M.D. Sevilla, J. Phys. Chem. B 110, 24171 (2006)

    Article  Google Scholar 

  16. R. Kaptein, K. Dijkstra, K. Nicolay, Nature 274, 293 (1978)

    Article  ADS  Google Scholar 

  17. P.J. Hore, R.W. Broadhurst, Prog. Nucl. Magn. Reson. Spectrosc. 25, 345 (1993)

    Article  Google Scholar 

  18. K.H. Mok, P.J. Hore, Methods (San Diego, CA, United States) 34, 75 (2004)

    Article  Google Scholar 

  19. S. Stob, R.M. Scheek, R. Kaptein, Photochem. Photobiol. 49, 717 (1989)

    Article  Google Scholar 

  20. A.V. Yurkovskaya, O.A. Snytnikova, O.B. Morozova, Y.P. Tsentalovich, R.Z. Sagdeev, Phys. Chem. Chem. Phys. 5, 3653 (2003)

    Article  Google Scholar 

  21. M. Eigen, Angew. Chem. Int. Edit. 3, 1 (1964)

    Article  Google Scholar 

  22. A. Krezel, W. Bal, J. Inorg. Biochem. 98, 161 (2004)

    Article  Google Scholar 

  23. Yu.P. Tsentalovich, O.B. Morozova, A.V. Yurkovskaya, P.J. Hore, J. Phys. Chem. A 103, 5362 (1999)

    Article  Google Scholar 

  24. Yu.P. Tsentalovich, O.B. Morozova, A.V. Yurkovskaya, P.J. Hore, R.Z. Sagdeev, J. Phys. Chem. A 104, 6912 (2000)

    Article  Google Scholar 

  25. R. Kaptein, J. Chem. Soc., Chem. Commun. 732 (1971)

  26. S. Stob, R. Kaptein, Photochem. Photobiol. 49, 565 (1989)

    Article  Google Scholar 

  27. G.L. Closs, E.V. Sitzmann, J. Am. Chem. Soc. 103, 3217 (1981)

    Article  Google Scholar 

  28. J. Burri, H. Fischer, Chem. Phys. 161, 429 (1992)

    Article  Google Scholar 

  29. O.B. Morozova, A.V. Yurkovskaya, Y.P. Tsentalovich, M.D.E. Forbes, P.J. Hore, R.Z. Sagdeev, Mol. Phys. 100, 1187 (2002)

    Article  ADS  Google Scholar 

  30. J.-K. Vollenweider, H. Fischer, Chem. Phys. 124, 333 (1988)

    Article  Google Scholar 

  31. J.-K. Vollenweider, H. Fischer, J. Hennig, R. Leuschner, Chem. Phys. 97, 217 (1985)

    Article  Google Scholar 

  32. F.J. Adrian, J. Chem. Phys. 53, 3374 (1970)

    Article  ADS  Google Scholar 

  33. S. Grosse, A.V. Yurkovskaya, J. Lopez, H.-M. Vieth, J. Phys. Chem. A 105, 6311 (2001)

    Google Scholar 

Download references

Acknowledgments

Financial support by the Russian Foundation for Basic Research (projects No. 09-03-91006-FWF, 09-03-00837-a, and 11-03-00296-a), the program of the President of Russia for support of leading scientific schools (NSh-7643.2010.3), the Program of the Division of Chemistry and Material Science of the Russian Academy of Sciences (RAS, project 5.1.1), and the Siberian branch of RAS (projects No. 28) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra V. Yurkovskaya.

Additional information

Dedicated to Professor Renad Sagdeev on the occasion of his 70th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozova, O.B., Saprygina, N.N., Fedorova, O.S. et al. Deprotonation of Transient Guanosyl Cation Radical Catalyzed by Buffer in Aqueous Solution: TR-CIDNP Study. Appl Magn Reson 41, 239–250 (2011). https://doi.org/10.1007/s00723-011-0252-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0252-2

Keywords

Navigation