Skip to main content
Log in

Real-Time in Vitro Drug Dissolution Studies of Tablets Using Volume-Localized NMR (MRS)

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

An approach to measure in vitro drug dissolution rates employing spatially resolved nuclear magnetic resonance (NMR) is reported, as a complement to standard United States Pharmacopeia protocols. Measurements are performed under conditions that mimic the physiological (pH 1, temperature 37° C). In order to register realistic dissolution rates, the sample is stirred in the magnetic field, employing a setup that is described. While the stirrer in the sample cell does degrade spectral resolution even in volume-localized mode, it proves possible nevertheless to acquire ‘high resolution’ information. Measurements are performed employing ‘point resolved spectroscopy’ (PRESS) by tracking drug concentration in a selected voxel in the dissolution medium as a function of time. The dissolution of the tablets in vitro follows first-order kinetics under the non-sink conditions of these experiments, the measured rate constants reflecting characteristic differences in dissolution rates of different formulations. We supplement this study with diffusion-weighted imaging of water ingress into the tablets, confirming the trends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P. Gao, J.W. Skoug, P.R. Nixon, R. Ju, N.L. Stemm, I.K.-C. Sung, J. Pharm. Sci. 85, 732 (1996)

    Article  Google Scholar 

  2. R. Konrad, A. Christ, G. Zessin, U. Cobet, Int. J. Pharm. 163, 123 (1998)

    Article  Google Scholar 

  3. V. Michailova, S. Titeva, R. Kotsilkova, E. Krusteva, E. Minkov, Int. J. Pharm. 222, 7 (2001)

    Article  Google Scholar 

  4. P. Costa, Int. J. Pharm. 220, 77 (2001)

    Article  Google Scholar 

  5. A. Djemai, L.F. Gladden, J. Booth, R.S. Kittlety, P.R. Gellert, Magn. Reson. Imaging 19, 521 (2001)

    Article  Google Scholar 

  6. M. Kojima, H. Nakagami, Chem. Pharm. Bull. 50, 1621 (2002)

    Article  Google Scholar 

  7. J.C. Richardson, R.W. Bowtel, K. Mäder, C.D. Melia, Adv. Drug Delivery Rev. 57, 1191 (2005)

    Article  Google Scholar 

  8. S. Abrahmsén-Alami, A. Körner, I. Nilsson, A. Larsson, Int. J. Pharm. 342, 105 (2007)

    Article  Google Scholar 

  9. K.P. Nott, Eur. J. Pharm. Biopharm. 74, 78 (2010)

    Article  Google Scholar 

  10. P. Colombo, R. Bettini, P. Santi, N.A. Peppas, Pharm. Sci. Technol. Today 3, 198 (2000)

    Article  Google Scholar 

  11. D. Alderman, Int. J. Pharm. Technol. Prod. Manuf. 5, 1 (1984)

    Google Scholar 

  12. R. Bowtell, J.C. Sharp, A. Peters, P. Mansfield, A.R. Rajabi-Siahboomi, M.C. Davies, C.D. Melia, Magn. Reson. Imaging 12, 361 (1994)

    Article  Google Scholar 

  13. A.R. Rajabi-Siahboomi, R.W. Bowtell, P. Mansfield, M.C. Davies, C.D. Melia, Pharm. Res. 13, 376 (1996)

    Article  Google Scholar 

  14. B. Madhu, J. Hjärtstam, B. Soussi, J. Control. Release 56, 95 (1998)

    Article  Google Scholar 

  15. J. Tritt-Goc, J.J. Kowalczuk, Eur. J. Pharm. Sci. 15, 341 (2002)

    Google Scholar 

  16. A. Haase, J. Frahm, D. Matthaei, W. Hänicke, K.-D. Merboldt, J. Magn. Reson. 67, 258 (1986)

    Google Scholar 

  17. A. Haase, Magn. Reson. Med. 13, 77 (1990)

    Article  MathSciNet  Google Scholar 

  18. S. Gravina, D.G. Cory, J. Magn. Reson. B 104, 53 (1994)

    Article  Google Scholar 

  19. C. Dahlberg, A. Fureby, M. Schuleit, S.V. Dvinskikh, I. Furó, J. Control. Release 122, 199 (2007)

    Article  Google Scholar 

  20. P.A. Bottomley, Ann. N. Y. Acad. Sci. 508, 333 (1987)

    Article  ADS  Google Scholar 

  21. T. Ernst, J. Hennig, J. Magn. Reson. B 106, 181 (1995)

    Article  Google Scholar 

  22. J. Granot, J. Magn. Reson. 70, 488 (1986)

    Google Scholar 

  23. R. Kimmich, D. Hoepfel, J. Magn. Reson. 72, 379 (1987)

    Google Scholar 

  24. J. Frahm, K.-D. Merboldt, W. Hänicke, J. Magn. Reson. 72, 502 (1987)

    Google Scholar 

  25. R.H. Griffey, D.P. Flamig, J. Magn. Reson. 88, 161 (1990)

    Google Scholar 

  26. E.O. Stejskal, J.E. Tanner, J. Chem. Phys. 42, 288 (1965)

    Article  ADS  Google Scholar 

  27. D. Le Bihan, Magn. Reson. Q. 7, 1 (1999)

    ADS  Google Scholar 

  28. S.A. Qureshi, Eur. J. Pharm. Sci. 23, 271 (2004)

    Article  Google Scholar 

  29. P. Costa, J.M.S. Lobo, Eur. J. Pharm. Sci. 13, 123 (2001)

    Article  Google Scholar 

  30. E.L. Cussler, Diffusion Mass Transfer in Fluid Systems, 3rd edn. (Cambridge University Press, Cambridge, 2007)

  31. N.V. Mulye, S.J. Turco, Drug Dev. Ind. Pharm. 21, 943 (1995)

    Article  Google Scholar 

  32. Y. Agata, Y. Iwao, A. Miyagishima, S. Itai, Chem. Pharm. Bull. 58, 511 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

A.B. thanks the Council for Scientific and Industrial Research and the Indian Institute of Technology, Madras, for the grant of Senior Research Fellowship and of Research Assistantship, respectively; N.C. thanks the Department of Science and Technology and the Indian Institute of Technology, Madras for spectrometer grants. We thank Ms. Christy George, Senior Research Fellow, for her kind help with the manuscript revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Chandrakumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, A., Chandrakumar, N. Real-Time in Vitro Drug Dissolution Studies of Tablets Using Volume-Localized NMR (MRS). Appl Magn Reson 40, 251–259 (2011). https://doi.org/10.1007/s00723-011-0206-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-011-0206-8

Keywords

Navigation