Skip to main content
Log in

A High-Conversion-Factor, Double-Resonance Structure for High-Field Dynamic Nuclear Polarization

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

This contribution presents a novel design of a double-resonance structure for high-field dynamic nuclear polarization operating at 95 GHz and 144 MHz, in which a miniaturized radiofrequency coil is integrated within a single-mode nonradiative dielectric resonator. After a detailed discussion of the design principles, the conversion factors of this system are determined by means of microwave and radiofrequency measurements. The obtained results, 1.68 mT/W1/2 for the microwave conversion factor and 0.8 mT/W1/2 for the radiofrequency conversion factor, represent the state-of-the-art among the double-resonance structures. Simultaneous electron paramagnetic resonance and liquid-state 1H nuclear magnetic resonance experiments are performed on samples of nitroxide radical 2,2,6,6-tetramethylpiperidine-1-oxyl dissolved in a mixture of water and dioxane. A maximum dynamic nuclear polarization enhancement of about −16 is obtained at a microwave power of 70 mW with a radical concentration of 10 mM in nanoliter-sized sample volumes. These results are discussed in view of further improvements and applications of the proposed double-resonance structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.W. Overhauser, Phys. Rev. 92, 411 (1953)

    Article  MATH  ADS  Google Scholar 

  2. T.R. Carver, C.P. Slichter, Phys. Rev. 92, 212 (1953)

    Article  ADS  Google Scholar 

  3. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961)

    Google Scholar 

  4. A.V. Kessenikh, V.I. Lushchikov, A.A. Manenkov, Y.V. Taran, Sov. Phys. Solid State 5, 321 (1963)

    Google Scholar 

  5. A.V. Kessenikh, A.A. Manenkov, G.I. Pyatnitskii, Sov. Phys. Solid State 6, 641 (1964)

    Google Scholar 

  6. C.F. Hwang, D.A. Hill, Phys. Rev. Lett. 18, 110 (1967)

    Article  ADS  Google Scholar 

  7. C.F. Hwang, D.A. Hill, Phys. Rev. Lett. 19, 1011 (1967)

    Article  ADS  Google Scholar 

  8. D.S. Wollan, Phys. Rev. B 13, 3671 (1976)

    Article  ADS  Google Scholar 

  9. R.A. Wind, M.J. Duijvestijn, C. van der Luat, A. Manenschijn, J. Vriend, Prog. Nucl. Magn. Reson. Spectrosc. 17, 33 (1985)

    Article  Google Scholar 

  10. T. Maly, G.T. Debelouchina, V.S. Bajaj, K.N. Hu, C.G. Joo, M.L. Mak-Jurkauskas, J.R. Sirigiri, P.C.A. van der Wel, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Chem. Phys. 128, 052211 (2008)

    Article  ADS  Google Scholar 

  11. K.H. Hausser, D. Stehlik, Adv. Magn. Reson. 3, 79 (1968)

    Google Scholar 

  12. G. Denninger, W. Stocklein, E. Dormann, M. Schwoerer, Mol. Cryst. Liq. Cryst. 120, 233–236 (1985)

    Article  Google Scholar 

  13. K.N. Hu, H.H. Yu, T.M. Swager, R.G. Griffin, J. Am. Chem. Soc. 126, 10844–10845 (2004)

    Article  Google Scholar 

  14. C. Song, K.N. Hu, C.G. Joo, T.M. Swager, R.G. Griffin, J. Am. Chem. Soc. 128, 11385–11390 (2006)

    Article  Google Scholar 

  15. E.R. McCarney, B.D. Armstrong, M.D. Lingwood, S. Han, Proc. Natl. Acad. Sci. USA 104, 1754–1759 (2007)

    Article  ADS  Google Scholar 

  16. B.D. Armstrong, S. Han, J. Am. Chem. Soc. 131, 4641–4647 (2009)

    Article  Google Scholar 

  17. J.H. Ardenkjaer-Larsen, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M.H. Lerche, R. Servin, M. Thaning, K. Golman, Proc. Natl. Acad. Sci. USA 100, 10158–10163 (2003)

    Article  ADS  Google Scholar 

  18. Appl. Magn. Reson. 34 (2008)

  19. L. Frydman, C. R. Chim. 9, 336–345 (2006)

    Google Scholar 

  20. Y. Shrot, L. Frydman, J. Magn. Reson. 195, 226–231 (2008)

    Article  ADS  Google Scholar 

  21. Y. Shrot, L. Frydman, J. Chem. Phys. 128, 052209 (2008)

    Article  ADS  Google Scholar 

  22. Y. Shrot, L. Frydman, J. Chem. Phys. 128, 164513 (2008)

    Article  ADS  Google Scholar 

  23. L.R. Becerra, G.J. Gerfen, R.J. Temkin, D.J. Singel, R.G. Griffin, Phys. Rev. Lett. 71, 3561 (1993)

    Article  ADS  Google Scholar 

  24. M.K. Hornstein, V.S. Bajaj, R.G. Griffin, K.E. Kreischer, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, IEEE Trans. Electron Devices 52, 798–807 (2005)

    Article  ADS  Google Scholar 

  25. V.S. Bajaj, M.K. Hornstein, K.E. Kreischer, J.R. Sirigiri, P.P. Woskov, M.L. Mak-Jurkauskas, J. Herzfeld, R.J. Temkin, R.G. Griffin, J. Magn. Reson. 189, 251–279 (2007)

    Article  ADS  Google Scholar 

  26. T. Idehara, T. Saito, I. Ogawa, S. Mitsudo, Y. Tatematsu, L. Agusu, H. Mori, S. Kobayashi, Appl. Magn. Reson. 34, 265–275 (2008)

    Article  Google Scholar 

  27. M. Glyavin, V. Khizhnyak, A. Luchinin, T. Idehara, T. Saito, Int. J. Infrared Millimeter Waves 29, 641–648 (2008)

    Article  ADS  Google Scholar 

  28. V. Weis, M. Bennati, M. Rosay, J.A. Bryant, R.G. Griffin, J. Magn. Reson. 140, 293–299 (1999)

    Article  ADS  Google Scholar 

  29. C.P. Poole, Electron Spin Resonance: a Comprehensive Treatise on Experimental Techniques (Wiley, New York, 1983)

    Google Scholar 

  30. A.P.M. Kentgens, J. Bart, P.J.M. van Bentum, A. Brinkmann, E.R.H. Van Eck, J.G.E. Gardeniers, J.W.G. Janssen, P. Knijn, S. Vasa, M.H.W. Verkuijlen, J. Chem. Phys. 128, 052202 (2008)

    Article  ADS  Google Scholar 

  31. D.J. Singel, H. Seidel, R.D. Kendrick, C.S. Yannoni, J. Magn. Reson. 81, 145–161 (1989)

    Google Scholar 

  32. R.A. Wind, R.A. Hall, A. Jurkiewicz, H. Lock, G.E. Maciel, J. Magn. Reson. A110, 33–37 (1994)

    Google Scholar 

  33. H. Cho, J. Baugh, C.A. Ryan, D.G. Cory, C. Ramanathan, J. Magn. Reson. 187, 242–250 (2007)

    Article  ADS  Google Scholar 

  34. M. Bennati, C.T. Farrar, J.A. Bryant, S.J. Inati, V. Weis, G.J. Gerfen, P. Riggs-Gelasco, J. Stubbe, R.G. Griffin, J. Magn. Reson. 138, 232–243 (1999)

    Article  ADS  Google Scholar 

  35. P. Hofer, G. Parigi, C. Luchinat, P. Carl, G. Guthausen, M. Reese, T. Carlomagno, C. Griesinger, M. Bennati, J. Am. Chem. Soc. 130, 3254 (2008)

    Article  Google Scholar 

  36. J.S. Hyde, J. Chem. Phys. 43, 1806 (1965)

    Article  ADS  Google Scholar 

  37. K.P. Dinse, K. Möbius, R. Biehl, Z. Naturforsch. 28a, 1069 (1973)

    ADS  Google Scholar 

  38. I.M. Brown, D.J. Sloop, Rev. Sci. Instrum. 41, 1774 (1970)

    Article  ADS  Google Scholar 

  39. K. Gruber, J. Forrer, A. Schweiger, H.H. Gunthard, J. Phys. E Sci. Istrum. 7, 569–576 (1973)

    Article  ADS  Google Scholar 

  40. V.P. Denysenkov, M.J. Prandolini, A. Krahn, M. Gafurov, B. Endeward, T.F. Prisner, Appl. Magn. Reson. 34, 289–299 (2008)

    Article  Google Scholar 

  41. G. Annino, M. Cassettari, M. Martinelli, IEEE Trans. Microwave Theory Tech. 57, 775–783 (2009)

    Article  Google Scholar 

  42. G. Annino, M. Fittipaldi, M. Martinelli, H. Moons, S. Van Doorslaer, E Goovaerts. J. Magn. Reson. 200, 29–37 (2009). doi:10.1016/j.jmr.2009.05.011

    Google Scholar 

  43. G. Annino, M. Cassettari, M. Martinelli, P.J.M. van Bentum, Appl. Magn. Reson. 24, 157–175 (2003)

    Article  Google Scholar 

  44. G. Annino, M. Cassettari, M. Fittipaldi, M. Martinelli, J. Magn. Reson. 176, 37–46 (2005)

    Article  ADS  Google Scholar 

  45. G. Annino, M. Cassettari, M. Martinelli, Rev. Sci. Instrum. 76, 084702 (2005)

    Article  ADS  Google Scholar 

  46. G. Annino, M. Cassettari, M. Martinelli, Rev. Sci. Instrum. 76, 064702 (2005)

    Article  ADS  Google Scholar 

  47. G. Annino, M. Cassettari, M. Martinelli, Appl. Magn. Reson. 26, 447–456 (2004)

    Article  Google Scholar 

  48. J. Krupka, A. Milewski, J. Phys. E Sci. Instrum. 12, 391–396 (1979)

    Article  ADS  Google Scholar 

  49. H. Seidel, Z. Phys. 165, 239 (1961)

    Article  ADS  Google Scholar 

  50. I. Tkach, A. Baldansuren, E. Kalabukhova, S. Lukin, A. Sitnikov, A. Tsvir, M. Ischenko, Y. Rosentzweig, E. Roduner, Appl. Magn. Reson. 35, 95–112 (2008)

    Article  Google Scholar 

  51. R.A. Wind, J.H. Ardenkjaer-Larsen, J. Magn. Reson. 141, 347–354 (1999)

    Article  ADS  Google Scholar 

  52. A. Savitsky, A.A. Dubinskii, M. Plato, Y.A. Grishin, H. Zimmermann, K. Möbius, J. Phys. Chem. B 112, 9079–9090 (2008)

    Article  Google Scholar 

  53. B.D. Armstrong, S. Han, J. Chem. Phys. 127, 104508 (2007)

    Article  ADS  Google Scholar 

  54. M.J. Prandolini, V.P. Denysenkov, M. Gafurov, S. Lyubenova, B. Endeward, M. Bennati, T.F. Prisner, Appl. Magn. Reson. 34, 399–407 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We kindly acknowledge Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), the European Cooperation in Science and Technology (COST) action P15 “Advanced paramagnetic resonance methods in molecular biophysics”, and the Short-Term Mobility programme of the National Research Council (CNR) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Annino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annino, G., Villanueva-Garibay, J.A., van Bentum, P.J.M. et al. A High-Conversion-Factor, Double-Resonance Structure for High-Field Dynamic Nuclear Polarization. Appl Magn Reson 37, 851 (2010). https://doi.org/10.1007/s00723-009-0091-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00723-009-0091-6

Keywords

Navigation