Skip to main content
Log in

Simulating Suppression Effects in Pulsed ENDOR, and the ‘Hole in the Middle’ of Mims and Davies ENDOR Spectra

  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

All pulsed electron-nuclear double resonance (ENDOR) techniques, and in particular the Mims and Davies sequences, suffer from detectability biases (‘blindspots’) that are directly correlated to the size of the hyperfine interactions of coupled nuclei. Our efforts at ENDOR ‘crystallography’ and ‘mechanism determination’ with these techniques have led our group to refine our simulations of pulsed ENDOR spectra to take into account these biases, and we here describe the process and illustrate it with several examples. We first focus on an issue whose major significance is not widely appreciated, the ‘hole in the middle’ of pulsed ENDOR spectra caused by the n = 0 suppression hole in Mims ENDOR and by the analogous A → 0 suppression in Davies ENDOR for I = ½ and for 2H (I = 1). We then discuss the general treatment of suppression effects for I = 1, illustrating it with a treatment of Mims suppression for 14N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.B. Mims, Proc. Roy. Soc. London 283, 452–457 (1965)

    Article  ADS  Google Scholar 

  2. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance, vol. 578 (Oxford University Press, Oxford, 2001)

    Google Scholar 

  3. M. Shanmugam, P.E. Doan, N.S. Lees, J. Stubbe, B.M. Hoffman, J. Am. Chem. Soc. 131, 3370–3376 (2009)

    Article  Google Scholar 

  4. E.R. Davies, Phys. Lett. A 47, 1–2 (1974)

    Article  ADS  Google Scholar 

  5. B.M. Hoffman, Acc. Chem. Res. 36, 522–529 (2003)

    Article  Google Scholar 

  6. B. Hoffman, Proc. Natl. Acad. Sci. USA 100, 3575–3578 (2003)

    Article  ADS  Google Scholar 

  7. P.E. Doan, B.M. Hoffman, Chem. Phys. Lett. 269, 208–214 (1997)

    Article  ADS  Google Scholar 

  8. L. Sachar, Holes, vol. 233 (Random House Children’s Books, New York, 1998)

    Google Scholar 

  9. S.K. Smoukov, D.A. Kopp, A.M. Valentine, R. Davydov, S.J. Lippard, B.M. Hoffman, J. Am. Chem. Soc. 124, 2657–2663 (2002)

    Google Scholar 

  10. A. Grupp, M. Mehring, in Modern Pulsed and Continuous-Wave Electron Spin Resonance, ed. by L. Kevan, M.K. Bowman (Wiley, New York, 1990), pp. 195–229

    Google Scholar 

  11. C. Fan, P.E. Doan, C.E. Davoust, B.M. Hoffman, J. Magn. Reson. 98, 62–72 (1992)

    Google Scholar 

  12. T.-C. Yang, M.D. Wolfe, M.B. Neibergall, Y. Mekmouche, J.D. Lipscomb, B.M. Hoffman, J. Am. Chem. Soc. 125, 7056–7066 (2003)

    Google Scholar 

  13. T.-C. Yang, M.D. Wolfe, M.B. Neibergall, Y. Mekmouche, J.D. Lipscomb, B.M. Hoffman, J. Am. Chem. Soc. 125, 2034–2035 (2003)

    Google Scholar 

  14. V.J. Derose, K.E. Liu, D.M. Kurtz Jr., B.M. Hoffman, S.J. Lippard, J. Am. Chem. Soc. 115, 6440–6441 (1993)

    Article  Google Scholar 

  15. V.J. Derose, K.E. Liu, S.J. Lippard, B.M. Hoffman, J. Am. Chem. Soc. 118, 121–134 (1996)

    Article  Google Scholar 

  16. P. Manikandan, E.-Y. Choi, R. Hille, B.M. Hoffman, J. Am. Chem. Soc. 123, 2658–2663 (2001)

    Article  Google Scholar 

  17. N.S. Lees, D.W. Chen, C.J. Walsby, E. Behshad, P.A. Frey, B.M. Hoffman, J. Am. Chem. Soc. 128, 10145–10154 (2006)

    Google Scholar 

  18. N.S. Lees, R.L. McNaughton, W.V. Gregory, P.L. Holland, B.M. Hoffman, J. Am. Chem. Soc. 130, 546–555 (2008)

    Google Scholar 

  19. J.-P. Willems, H.-I. Lee, D. Burdi, P.E. Doan, J. Stubbe, B.M. Hoffman, J. Am. Chem. Soc. 119, 9816–9824 (1997)

    Google Scholar 

  20. B.M. Hoffman, V.J. DeRose, P.E. Doan, R.J. Gurbiel, A.L.P. Houseman, J. Telser, Biol. Magn. Reson. 13, 151–218 (1993)

    Google Scholar 

  21. M.K. Bowman, R.J. Massoth, in Electronic Magnetic Resonance of the Solid State, ed. by J.A. Weil (Can. Soc. Chem., Ottawa, 1987), pp. 99–110

    Google Scholar 

  22. K.-K. Thuomas, A. Lund, J. Magn. Reson. 18, 12–21 (1975)

    Google Scholar 

  23. B.M. Hoffman, R.J. Gurbiel, M.M. Werst, M. Sivaraja, in Advanced EPR. Applications in Biology and Biochemistry, ed. by A.J. Hoff (Elsevier, Amsterdam, 1989), pp. 541–591

    Google Scholar 

  24. G.M. Muha, J. Magn. Reson. 49, 431–443 (1982)

    Google Scholar 

  25. V.J. Derose, B.M. Hoffman, in Methods in Enzymology, vol. 246, ed. by K. Sauer (Academic Press, New York, 1995), pp. 554–589

    Google Scholar 

  26. G.M. Muha, J. Magn. Reson. 53, 85–102 (1983)

    Google Scholar 

  27. K.J. LaChance-Galang, P.E. Doan, M.J. Clark, U. Rao, A. Yamano, B.M. Hoffman, J. Am. Chem. Soc. 117, 3529–3538 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Michael J. Clarke (Boston College) for the preparation of trans-[(Imidazole)2(NH3)4Ru(III)]Cl3. This work has been supported by the National Institute of Health (HL 13531, B.M.H.) and National Science Foundation (MCB0723330, B.M.H.). It has benefitted from the superb technical support of Mr. Clark Davoust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Hoffman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doan, P.E., Lees, N.S., Shanmugam, M. et al. Simulating Suppression Effects in Pulsed ENDOR, and the ‘Hole in the Middle’ of Mims and Davies ENDOR Spectra. Appl Magn Reson 37, 763–779 (2010). https://doi.org/10.1007/s00723-009-0083-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-009-0083-6

Keywords

Navigation