Skip to main content
Log in

Evaluation of magma mixing in the subvolcanic rocks of Ghansura Felsic Dome of Chotanagpur Granite Gneiss Complex, eastern India

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The subvolcanic rocks exposed in the Ghansura Felsic Dome (GFD) of the Bathani volcano-sedimentary sequence at the northern fringe of the Rajgir fold belt in the Proterozoic Chotanagpur Granite Gneiss Complex preserves evidence of magma mixing and mingling in mafic (dolerite), felsic (microgranite) and intermediate (hybrid) rocks. Structures like crenulated margins of mafic enclaves, felsic microgranular enclaves and ocelli with reaction surfaces in mafic rocks, hybrid zones at mafic-felsic contacts, back-veining and mafic flows in the granitic host imply magma mingling phenomena. Textural features like quartz and titanite ocelli, acicular apatite, rapakivi and anti-rapakivi feldspar intergrowths, oscillatory zoned plagioclase, plagioclase with resorbed core and intact rim, resorbed crystals, mafic clots and mineral transporting veins are interpreted as evidence of magma mixing. Three distinct hybridized rocks have formed due to varied interactions of the intruding mafic magma with the felsic host, which include porphyritic diorite, mingled rocks and intermediate rocks containing felsic ocelli. Geochemical signatures confirm that the hybrid rocks present in the study area are mixing products formed due to the interaction of mafic and felsic magmas. Physical parameters like temperature, viscosity, glass transition temperature and fragility calculated for different rock types have been used to model the relative contributions of mafic and felsic end-member magmas in forming the porphyritic diorite. From textural and geochemical investigations it appears that the GFD was a partly solidified magma chamber when mafic magma intruded it leading to the formation of a variety of hybrid rock types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acharyya SK (2003) The nature of Mesoproterozoic central Indian tectonic zone with exhumed and reworked older granulites. Gondwana Res 6(2):197–214

    Article  Google Scholar 

  • Ahmad M, Dubey J (2011) Report on prospecting for gold and silver mineralization in Munger Rajgir group of rocks in Nalanda District, Bihar. P(ii), Unpublished report, Geological Survey of India (F.S.: 2008-09, 2009-10, 2011-12)

  • Ahmad M, Paul AQ (2012) Tectono-stratigraphic constraints of the Bathani volcano-sedimentary, volcanic sequences and associated rocks, Chotanagpur Granite Gneiss Complex, Gaya district Bihar. NEWS, Geological Survey of India, Eastern Region 33(1&2):13–15

  • Ahmad M, Paul AQ (2013) Investigation of volcano-sedimentary sequence and associated rocks to identify gold and base metal mineralization at Gere – Kewti area of Gaya District, Bihar (G4), Unpublished report., Geological Survey of India (F.S.: 2012-13)

  • Ahmad M, Wanjari N (2009) Volcano-sedimentary sequence in the Munger-Rajgir metasedimentary belt, Gaya district, Bihar. Indian J Geosci 63(4):351–360

    Google Scholar 

  • Albarède F (1995) Introduction to geochemical modeling. Cambridge Univ. Press, Cambridge

    Book  Google Scholar 

  • Angell CA (1985) Strong and fragile liquids. In: Ngai KL, Wright GB (eds) Relaxations in complex systems. U.S. Department of Commerce National Technical Information Service, Springfield, pp 3–11

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47(3):505–539

    Article  Google Scholar 

  • Baker DR (1990) Chemical interdiffusion of dacite and rhyolite: anhydrous measurements at 1 atm and 10 kbar, application of transition state theory to diffusion in zoned magma chambers. Contrib Mineral Petr 104:407–423

    Article  Google Scholar 

  • Balaram V, Saxena VK, Manikyamba C, Ramesh SL (1990) Determination of rare earth elements in Japanese rock standards by inductively coupled plasma mass spectrometry. Atom Spectrosc 11(1):19–23

    Google Scholar 

  • Baxter S, Feely M (2002) Magma mixing and mingling textures in granitoids: examples from the Galway Granite, Connemara, Ireland. Miner Petrol 76:63–74

    Article  Google Scholar 

  • Bonin B (2004) Do coeval mafic and felsic magmas in postcollisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78(1–2):1–24

    Article  Google Scholar 

  • Boyton WV (1984) Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed) Rare earth element geochemistry. Elsevier, Amsterdam, pp 63–114

    Chapter  Google Scholar 

  • Burda J, Gawęda A, KlÓ§tzli U (2011) Magma hybridization in the Western Tatra Mts. granitoid intrusion (S-Poland, Western Carpathians). Miner Petrol. 10.1007/s00710-011-0150-1

    Google Scholar 

  • Castro A, Stephens WE (1992) Amphibole-rich polycrystalline clots in calc-alkaline granitic rocks and their enclaves. Can Mineral 30:1093–1112

    Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material (restite) in granite petrogenesis. J Petrol 28:571–604

    Article  Google Scholar 

  • Chatterjee N, Ghosh NC (2011) Extensive early neoproterozoic high-grade metamorphism in North Chotanagpur Gneissic Complex of the central Indian tectonic zone. Gondw Res 20:362–379

    Article  Google Scholar 

  • Chatterjee N, Crowley JI, Ghose NC (2008) Geochronology of the 1.55 Ga Bengal anorthosite and Grenvillian metamorphism in the Chotanagpur Gneissic Complex, eastern India. Precambrian Res 161:303–316

    Article  Google Scholar 

  • Chatterjee N, Banerjee M, Bhattacharya A, Maji AK (2010) Monazite chronology, metamorphism-anatexis and tectonic relevance of the mid-Neoproterozoic Eastern Indian tectonic zone. Precambrian Res 179:99–120

    Article  Google Scholar 

  • Choe WH, Jwa YJ (2004) Petrological and geochemical evidences for magma mixing in the Palgongsan Pluton. Geosci J 8(4):343–354

    Article  Google Scholar 

  • Christiansen EH, Venchiarutti DA (1990) Magmatic inclusions in rhyolites of the Spor Mountain Formation, Western Utah: limitations on compositional inferences from inclusions in granitic rocks. J Geophys Res 95:17717–17728

    Article  Google Scholar 

  • Das B, Patel NP (1984) Nature of the Narmada–Son lineament. J Geol Soc India 25:267–276

    Google Scholar 

  • DePaolo DJ (1981) Neodymium isotopes in the Colorado Front Range and crust–mantle evolution in the Proterozoic. Nature 291:193–196

    Article  Google Scholar 

  • Dingwell DB, Bagdassarov NS, Bussod GY, Webb SL (1993) Magma rheology. Experiments at high pressures and application to the earth’s mantle. Mineral Assoc Canada Short Course Handbook 21:233–333

  • Dorais MJ, Whitney JA, Roden MF (1990) Origin of mafic enclaves in the Dinkey Creek Pluton, Central Sierra-Nevada Batholith, California. J Petrol 31:853–881

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses using stoichiometric criteria. Mineral Mag 51:431–435

    Article  Google Scholar 

  • Foster DA, Hyndman DW (1990) Magma mixing and mingling between synplutonic mafic dikes and granite in the Idaho-Bitterroot Batholith. In: Anderson JL (ed) The nature of cordilleran magmatism, vol 174. Geol Soc Am Mem, pp 347–358

  • Fourcade S, Allégre CJ (1981) Trace elements behaviour in granite genesis; a case study: the calc-alkaline plutonic association from the Quérigut complex (Pyrénées, France). Contrib Mineral Petr 76:177–195

    Article  Google Scholar 

  • Frost TP, Mahood GA (1987) Field, chemical, and physical constraints on mafic-felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. Geol Soc Am Bull 99:272–291

    Article  Google Scholar 

  • Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355

    Article  Google Scholar 

  • Ghent ED, Stout MZ (1984) TiO2 activity in metamorphosed pelitic and basic rocks; principles and applications to metamorphism in southeastern Canadian Cordillera. Contrib Mineral Petr 86:248–255

    Article  Google Scholar 

  • Gioncada A, Mazzuoli R, Milton AJ (2005) Magma mixing at Lipari (Aeolian Islands, Italy): Insights from textural and compositional features of phenocrysts. J Volcanol Geotherm Res 145:97–118

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Hallot E, Davy P, Bremond d’Ars J, Auvray B, Martin H, Damme HV (1996) Non-Newtonian effects during injection in partially crystallised magmas. J Volcanol Geotherm Res 71(1):31–44

    Article  Google Scholar 

  • Hibbard MJ (1991) Textural anatomy of twelve magma-mixed granitoid systems. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Developments in petrology. Elsevier, Amsterdam, pp 431–444

    Google Scholar 

  • Janoušek V, Bowes DR, Rogers G, Farrow CM, Jelínek E (2000a) Modelling diverse processes in the petrogenesis of a composite batholith: the Central Bohemian Pluton, Central European Hercynides. J Petrol 41:511–543

    Article  Google Scholar 

  • Janoušek V, Bowes DR, Braithwaite CJR, Rogers G (2000b) Microstructural and mineralogical evidence for limited involvement of magma mixing in the petrogenesis of a Hercynian high-K calc-alkaline intrusion: the Kozarovice granodiorite, Central Bohemian Pluton, Czech Republic. Trans R Soc Edinb Earth Sci 91:15–26

    Article  Google Scholar 

  • Janoušek V, Braithwaite CJR, Bowes DR, Gerdes A (2004) Magma mixing in the genesis of Hercyniancalc-alkaline granitoids: an integrated petrographic and geochemical study of the Sazava intrusion, Central Bohemian Pluton, Czech Republic. Lithos 78:67–99

    Article  Google Scholar 

  • Johnston AD, Wyllie PJ (1988) Interaction of granitic and basic magmas: experimental observations on contamination processes at 10 kbar with H2O. Contrib Mineral Petr 98:352–362

    Article  Google Scholar 

  • Karmakar S, Bose S, Basu AS, Das K (2011) Evolution of granulite enclaves and associated gneisses from Purulia, Chhotanagpur Granite Gneiss Complex, India: evidence for 990 – 940 Ma tectonothermal event(s) at the eastern India cratonic fringe zone. J Asian Earth Sci 41(1):69–88

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315:980–983

    Article  Google Scholar 

  • Kohn MJ, Northrup CJ (2009) Taking Mylonites’ Temperatures. Geology 37(1):47–50

    Article  Google Scholar 

  • Koyaguchi T (1986) Evidence for two-state mixing in magmatic inclusions and rhyolitic lava domes on Nijima Island, Japan. J Volcanol Geotherm Res 29:7–98

    Article  Google Scholar 

  • Kumar S, Rino V (2006) Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, central India: evidence of magma mixing, mingling, and chemical equilibration. Contrib Mineral Petr 152(5):591–609

    Article  Google Scholar 

  • Kuşcu GG, Floyd PA (2001) Mineral compositional and textural evidence for magma mingling in the Saraykent volcanics. Lithos 56:207–230

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Howthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino (1997) Nomenclature of amphiboles. Report of the subcommittee on amphiboles of the International Mineralogical Association: commission on new mineral names. Mineral Mag 61:295–321

    Article  Google Scholar 

  • Maji AK, Goon S, Bhattacharya A, Mishra B, Mahato S, Bernhardt HJ (2008) Proterozoic polyphase metamorphism in the Chotanagpur Gneiss Complex (India), and implications for trans-continental Gondwana correlation. Precambrian Res 162:385–402

    Article  Google Scholar 

  • Martin RF (2007) Amphiboles in the igneous environment. Rev Mineral Geochem 67:323–358

    Article  Google Scholar 

  • Middlemost EAK (1994) Naming materials in the magma/igneous system. Earth Sci Rev 37:215–224

    Article  Google Scholar 

  • Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Miner Petrol 39:55–76

    Article  Google Scholar 

  • Murphy JB (2007) Igneous rock associations 8. Arc magmatism II: geochemical and isotopic characteristics. Geosci Can 34(1):7–35

  • Neves SP, Vauchez A (1995) Successive mixing and mingling of magmas in a plutonic complex of Northeast Brazil. Lithos 34:275–299

    Article  Google Scholar 

  • Pal T, Mitra SK, Sengupta S, Katari A, Bandopadhyay PC, Bhattacharya AK (2007) Dacite–andesites of Narcondam volcano in the Andaman sea — an imprint of magma mixing in the inner arc of the Andaman–Java subduction system. J Volcanol Geotherm Res 168:93–113

    Article  Google Scholar 

  • Pietranik A, Koepke J (2009) Interactions between dioritic and granodioritic magmas in mingling zones: plagioclase record of mixing, mingling and subsolidus interactions in the Gęsiniec Intrusion, NE Bohemian Massif, SW Poland. Contrib Mineral Petr 158:17–36

    Article  Google Scholar 

  • Pouchou JL, Pichoir F (1987) Basic expressions of PAP computation for quantitative EPMA. Proceedings of ICXOM 11, Ontario, 249–253

  • Purohit KK, Mukherjee PK, Saini NK, Khanna PP, Rathi MS (2006) Geochemical survey of stream sediments from upper parts of Alaknanda, Mandakini, Bhilangana and Bhagirathi Catchments, GarhwalHimalaya. Himal Geol 27(1):31–39

    Google Scholar 

  • Putirka KD, Mikaelian H, Ryerson F, Shaw H (2003) New clinopyroxene-liquid thermobarometers for mafic, evolved, and volatile-bearing lava compositions, with applications to lavas from Tibet and the Snake River Plain, Idaho. Am Mineral 88:1542–1554

    Article  Google Scholar 

  • Saikia A, Gogoi B, Ahmad M, Ahmad T (2014) Geochemical constraints on the evolution of mafic and felsic rocks in the Bathani volcano-sedimentary sequence of Chotanagpur Granite Gneiss Complex. J Earth Syst Sci 123(5):959–987

    Article  Google Scholar 

  • Saini NK, Mukherjee PK, Rathi MS, Khanna PP, Purohit KK (1998) A new geochemical reference sample of granite (DG-H) from Dalhousie, Himachal Himalaya. J Geol Soc India 52:603–606

    Google Scholar 

  • Saini NK, Mukherjee PK, Rathi MS, Khanna PP (2000) Evaluation of energy-dispersive X-ray fluorescence spectrometry in the rapid analysis of silicate rocks using pressed powder pellets. X-Ray Spectrom 29(2):166–172

    Article  Google Scholar 

  • Saini NK, Mukherjee PK, Khanna PP, Purohit KK (2007) A proposed amphibolite reference rock sample (AM-H) from Himachal Pradesh. J Geol Soc India 69:799–802

    Google Scholar 

  • Sanyal S, Sengupta P (2012) Metamorphic evolution of the Chotangapur Granite Gneiss Complex of the East Indian shield: current status. In: Mazumder R, Saha D (eds) Paleoproterozoic of India geological society, vol 365. Geol Soc London Spec Publ, pp 117–145

  • Seaman SE, Ramsay PC (1992) Effects of magma mingling in the granites of Mount Desert Island, Maine. J Geol 100:395–409

    Article  Google Scholar 

  • Singh Y, Krishna V (2009) Rb-Sr geochronology and petrogenesis of granitoids from the Chotanagpur Granite Gneiss Complex of Raikera-Kunkuri region, Central India. J Geol Soc India 74:200–208

    Article  Google Scholar 

  • Spear FS, Wark DA (2009) Cathodoluminescence imaging and titanium thermometry in metamorphic quartz. J Metamorph Geol 27(3):187–205

    Article  Google Scholar 

  • Speer JA (1984) Micas in igneous rocks. In: Bailey SW (ed) Micas. Rev Mineral, vol 70.Miner Soc Am, pp 299–356

  • Stein H, Hannah J, Zimmerman A, Markey R (2006) Mineralization and deformation of the Malanjkhand terrane (2,490–2,440 Ma) along the southern margin of the Central Indian Tectonic Zone. Miner Deposita 40:755–765

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in ocean basins, vol 42. Geol Soc London Spec Publ, pp 313–345

  • Tammann G, Hesse W (1926) The dependence of viscosity upon the temperature of supercooled liquids. Z Anorg Allg Chem 156:245–257

    Article  Google Scholar 

  • Tate MC, Clarke DB, Heaman LM (1997) Progressive hybridisation between late Devonian mafic-intermediate and felsic magmas in the Meguma Zone of Nova Scotia, Canada. Contrib Mineral Petr 126:401–415

    Article  Google Scholar 

  • Tepper JH, Kuehner SM (2004) Geochemistry of mafic enclaves and host granitoids from the Chilliwack Batholith, Washington: chemical exchange processes between coexisting mafic and felsic magmas and implications for the interpretation of enclave chemical traits. J Geol 112:349–367

    Article  Google Scholar 

  • Ubide T, Gale C, Larrea P, Arranz E, Lago M, Tierz P (2014) The relevance of crystal transfer to magma mixing: a case study in composite dykes from the central Pyrenees. J Petrol 55(8):1535–1559

    Article  Google Scholar 

  • Vernon RH, Etheridge MA, Wall VJ (1988) Shape and microstructure of microgranitoid enclaves: indicators of magma mingling and flow. Lithos 22:1–11

    Article  Google Scholar 

  • Vogel DH (1921) Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys Z 22:645–646

    Google Scholar 

  • Vogt JHL (1921) The physical chemistry of the crystallization and magmatic differentiation of igneous rocks. J Geol 28:318–350

  • Waight TE, Maas R, Nicholls IA (2001) Geochemical investigations of microgranitoid enclaves in the S-type Cowra Granodiorite, Lachlan Fold Belt, SE Australia. Lithos 56:165–186

    Article  Google Scholar 

  • Walker F (1957) Ophitic texture and basaltic crystallization. J Geol 65(1):1–14

    Article  Google Scholar 

  • Wall VJ, Clemens JD, Clarke DB (1987) Models for granitoid evolution and source compositions. J Geol 95:731–749

    Article  Google Scholar 

  • Wark DA, Watson EB (2006) TitaniQ: a titanium-in-quartz geothermometer. Contrib Mineral Petr 152:743–754

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and compositional effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Watson EB, Jurewicz SR (1984) Behavior of alkalies during diffusive interaction of granitic xenoliths with basaltic magma. J Geol 92:121–131

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Chapman and Hall, London

    Book  Google Scholar 

Download references

Acknowledgements

Constructive reviews by Erwan Hallot and an anonymous expert, and comments of journal editor Anton R. Chakhmouradian are gratefully acknowledged. A.S. acknowledges the CSIR grant vide Project no. 24(0317)/12/EMR-II, and B.G. acknowledges CSIR JRF/SRF fellowship no. 09/045(1146)/2011-EMR1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashima Saikia.

Additional information

Editorial handling: A. R. Chakhmouradian

Electronic supplementary material

Below is the link to the electronic supplementary material.

710_2017_540_MOESM1_ESM.eps

Total alkali versus silica plot (Middlemost <link rid="bib46">1994</link>) showing the geochemical nomenclature of the studied rocks of GFD. Symbols as in Fig. <link rid="fig5">5</link> (EPS 481 KB)

710_2017_540_MOESM2_ESM.eps

Fe2Si2O6-Mg2Si2O6-Ca2Si2O6 diagram (Morimoto et al. <link rid="bib48">1988</link>) showing the composition of pyroxene from the mafic end-member of GFD (EPS 630 KB)

710_2017_540_MOESM3_ESM.eps

Nomenclature of plagioclase occurring (a) in the mafic end-member; (b), (c) in the porphyritic diorite. Symbols represent: solid diamonds – compositions of plagioclase from the mafic rocks; solid circles – compositions of an individual plagioclase grain (rim–rim profile) from the porphyritic diorite; plus – compositions of an individual plagioclase grain (rim–rim profile) from the porphyritic diorite (EPS 658 KB)

710_2017_540_MOESM4_ESM.eps

Compositional profiles of two plagioclase grains from the porphyritic diorite (Sample R04). The compositional variability shown as a function of XCa content marks the disequilibrium growth of the mineral (see Supplementary Table <link rid="Sec30">3</link>) (EPS 2415 KB)

710_2017_540_MOESM5_ESM.eps

Amphibole compositions from the ARM shown in Fig. <link rid="fig3">3</link>d. Symbols represent: solid triangles - ARM exterior amphiboles; solid circles - ARM interior amphiboles (EPS 677 KB)

710_2017_540_MOESM6_ESM.eps

Nomenclature and classification of biotites from the (a) amphibole-biotite vein shown in Fig. <link rid="fig3">3</link>d; (b) felsic groundmass through which the amphibole-biotite vein is traversing; (c) porphyritic diorite. Symbols represent: solid diamonds - compositions of biotite from the amphibole-biotite vein; plus – compositions of biotite from the felsic groundmass through which the amphibole-biotite vein is traversing; solid circles – compositions of biotite from the porphyritic diorite (EPS 547 KB)

Representative EPMA analyses of pyroxene from the mafic end-member of GFD Wt. % oxide (DOCX 46 KB)

710_2017_540_MOESM8_ESM.docx

Representative EPMA analyses of feldspars from the (a) mafic end-member and (b) hybrid rock of GFD in Wt. % oxide. An = Anorthite, Ab = Albite, Or = Orthoclase (DOCX 27 KB)

710_2017_540_MOESM9_ESM.docx

Representative EPMA analyses of amphiboles from the mingled rocks of GFD displaying amphibole-rich microzones (ARM) (DOCX 16 KB)

710_2017_540_MOESM10_ESM.docx

Representative EPMA analyses of biotites from the (a) mingled rocks and (b) porphyritic diorites of GFD in Wt. %. (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, B., Saikia, A., Ahmad, M. et al. Evaluation of magma mixing in the subvolcanic rocks of Ghansura Felsic Dome of Chotanagpur Granite Gneiss Complex, eastern India. Miner Petrol 112, 393–413 (2018). https://doi.org/10.1007/s00710-017-0540-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-017-0540-0

Keywords

Navigation