Skip to main content
Log in

Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: evidence from mafic microgranular enclaves

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Mafic microgranular enclaves (MMEs) are widespread in the Horoz pluton with granodiorite and granite units. Rounded to elliptical MMEs have variable size (from a few centimetres up to metres) and are generally fine-grained with typical magmatic textures. The plagioclase compositions of the MMEs range from An18–An64 in the cores to An17–An29 in the rims, while that of the host rocks varies from An17 to An55 in the cores to An07 to An33 in the rims. The biotite is mostly eastonitic, and the calcic-amphibole is magnesio-hornblende and edenite. Oxygen fugacity estimates from both groups’ biotites suggest that the Horoz magma possibly crystallised at fO2 conditions above the nickel–nickel oxide (NNO) buffer. The significance of magma mixing in their genesis is highlighted by various petrographic and mineralogical characteristics such as resorption surfaces in plagioclases and amphibole; quartz ocelli rimmed by biotite and amphibole; sieve and boxy cellular textures, and sharp zoning discontinuities in plagioclase. The importance of magma mixing is also evident in the amphiboles of the host rocks, which are slightly richer in Si, Fe3+ and Mg in comparison with the amphiboles of MMEs. However, the compositional similarity of the plagioclase and biotite phenocrysts from MMEs and their host rocks suggests that the MMEs were predominantly equilibrated with their hosts. Evidence from petrography and mineral chemistry suggests that the adakitic Horoz MMEs could be developed from a mantle-derived, water-rich magma (>3 mass%) affected by a mixing of felsic melt at P >2.3 kbar, T >730°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel-Rahman AFM (1994) Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. J Petrol 35:525–541

    Google Scholar 

  • Albuquerque CAR (1973) Geochemistry of biotites from granitic rocks, Northern Portugal. Geochim Cosmochim Acta 37:1779–1802

    Article  Google Scholar 

  • Anderson JL, Smith DR (1995) The effects of temperature and fO2 on the Al-in hornblende barometer. Am Mineral 80:549–559

    Google Scholar 

  • Barbarin B (1990) Plagioclase xenocrysts and mafic magmatic enclaves in some granitoids of the Sierra Nevada batholith, California. J Geophys Res 95:17747–17756

    Article  Google Scholar 

  • Barbarin B (2005) Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos 80:155–177

    Article  Google Scholar 

  • Barbarin B, Didier J (1992) Genesis and evolution of mafic microgranular enclaves through various types of interaction between coexisting felsic and mafic magmas. Trans R Soc Edinb: Earth Sci 83:145–153

    Article  Google Scholar 

  • Barriere M, Cotten J (1979) Biotites and associated minerals as markers of magmatic fractionation and deuteric equilibration in granites. Contrib Mineral Petrol 70:183–192

    Article  Google Scholar 

  • Baxter S, Feely M (2002) Magma mixing and mingling textures in granitoids: examples from the Galway granite, Connemara, Ireland. Mineral Petrol 76:63–74

    Article  Google Scholar 

  • Beane RE (1974) Biotite stability in the porphyry copper environment. Econ Geol 69:241–256

    Article  Google Scholar 

  • Bingol E (1974) 1/2500,000 olcekli Turkiye metamorfizma haritası ve bazı metamorfik kusakların jeotektonik evrimi uzerine tartısmalar. MTA Enstitusu Dergisi 83:178–184 (in Turkish)

    Google Scholar 

  • Blundy JD, Sparks RSJ (1992) Petrogenesis of mafic inclusions in granitoids of the Adamello Massif, Italy. J Petrol 33:1039–1104

    Google Scholar 

  • Bonin B (2004) Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal, sources? A review. Lithos 78:1–24

    Article  Google Scholar 

  • Çalapkulu F (1980) Geological study of Horoz Granodiorite. Bulletin of the Geological Society of Turkey 23:59–68 (Turkish with English abstract)

    Google Scholar 

  • Çevikbaş A, Boztuğ D, Demirkol C et al (1995) Horoz plütonunun (Ulukışla- Niğde) oluşumunda dengelenmiş hibrid sistemin mineralojik ve jeokimyasal kanıtları. Türkiye Jeoloji Kurultayı Bülteni 10:62–77 (Turkish with English abstract)

    Google Scholar 

  • Chappel BW, White AJR (1992) I- and S-types granites in the Lachland Fold Belt. Trans Royal Soc Edinb: Earth Sci 83:1–26

    Article  Google Scholar 

  • Chappell BW, White AJR, Wyborn D (1987) The importance of residual source material restite in granite petrogenesis. J Petrol 28:1111–1138

    Google Scholar 

  • Chivas AR (1981) Geochemical evidence for magmatic fluids in porphyry copper mineralization. Contrib Mineral Petrol 78:389–403

    Article  Google Scholar 

  • Clark M, Robertson A (2002) The role of the early Tertiary Ulukisla Basin, southern Turkey, in suturing of the Mesozoic Tethys ocean. J Geol Soc London 159:673–690

    Article  Google Scholar 

  • Dahlquist JA (2002) Mafic microgranular enclaves: early segregation from metaluminous magma (Sierra de Chepes), Pampean Ranges, NW Argentina. J S Am Earth Sci 15(6):643–655

    Article  Google Scholar 

  • Didier J (1973) Granites and their enclaves. Elsevier, London, p 393

    Google Scholar 

  • Didier J (1987) Contribution of enclave studies to the understanding of origin and evolution of granitic magmas. Geol Rundsch 79:41–50

    Article  Google Scholar 

  • Didier J, Barbarin B (1991) Enclaves and granite petrology, developments in petrology. Elsevier, Amsterdam, pp 1–625

    Google Scholar 

  • Dilek Y, Whitney DL, Tekeli O (1999) Links between tectonic processes and landscape morphology in an Alpine collision zone, South-Central Turkey. Zeitschr Geomorph NF 118:147–164

    Google Scholar 

  • Dodge FCW, Smith VC, Mays RE (1969) Biotites from granitic rocks of the Central Sierra Nevada Batholith, California. J Petrol 10:250–271

    Google Scholar 

  • Dorais MJ, Whitney JA, Roden MF (1990) Origin ofmafic enclaves in the Dinkey Creek Pluton, Central Sierra Nevada batholith, California. J Petrol 31:853–881

    Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stochiometric criteria. Mineral Mag 51:431–435

    Article  Google Scholar 

  • Dymek RF (1983) Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses, West Greenland. Am Mineral 68(9–10):880–899

    Google Scholar 

  • Eggler DH (1972) Water-saturated and undersaturated melting relations in a Paricutin andesite and an estimate of water content in the natural magma. Contrib Mineral Petrol 34:261–271

    Article  Google Scholar 

  • Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs. Nature 288:446–450

    Article  Google Scholar 

  • Feeley TC, Wilson LF, Underwood SJ (2008) Distribution and compositions magmatic inclusions in the Mount Helen dome, Lassen volcanic center, California: insights into magma chamber processes. Lithos 106:173–189

    Article  Google Scholar 

  • Foster MD (1960) Interpretation of the composition of trioctahedral micas. U S Geol Surv Prof Pap 354-B:11–49

    Google Scholar 

  • Frost TP, Mahood GA (1987) Field, chemical, and physical constraints on mafic–felsic magma interaction in the Lamarck granodiorite, Sierra Nevada, California. Geol Soc Am Bull 99:272–291

    Article  Google Scholar 

  • Gilbert MC, Helz RT, Popp RK, Spear FS (1982) Experimental studies of amphibole stability. In: Veblen DR, Ribbe PH (eds) Amphiboles: petrology and experimental phase relations. Rev Mineral 9B:229–353

  • Gorur N, Oktay F, Seymen I, Sengor AMC (1984) Paleotectonic evolution of the Tuzgolu basin complex, central Turkey: sedimentary record of a Neo-Tethyan closure In: Dixon JE, Robertson AHF (eds) The geological evolution of the Eastern Mediterranean. Geol Soc London, Spec Publ 17:467–482

  • Gorur N, Tuysuz O, Sengor AMC (1998) Tectonic evolution of the Central Anatolian basins. Int Geol Rev 40:831–850

    Article  Google Scholar 

  • Hammarstrom JM, Zen E (1986) Aluminium in hornblende: an empirical igneous geobarometer. Am Mineral 71:1297–1313

    Google Scholar 

  • Helz RT (1973) Phase relations of basalts in their melting ranges at P H2O = 5 kb as a function of oxygen fugacity. J Petrol 14:249–302

    Google Scholar 

  • Hendry DAF, Chivas AR, Long JVP, Reed SJB (1985) Chemical differences between minerals from mineralizing and barren intrusions from some North American porphyry copper deposits. Contrib Mineral Petrol 89:317–329

    Article  Google Scholar 

  • Hibbard MJ (1981) The magma mixing origin of mantled feldspars. Contrib Mineral Petrol 76:158–170

    Article  Google Scholar 

  • Hibbard MJ (1991) Textural anatomy of twelve magma-mixed granitoid systems. In: Didier J, Barbarin B (eds) Enclaves and granite petrology. Elsevier, Amsterdam, pp 431–444

    Google Scholar 

  • Hibbard MJ (1995) Petrography to petrogenesis. Prentice Hall, New Jersey, pp 1–587

    Google Scholar 

  • Hietanen A (1974) Amphibole pairs, epidote minerals, chlorite, and plagioclase in metamorphic rocks, northern Sierra Nevada, California. Am Mineral 59:22–40

    Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol 116:433–447

    Article  Google Scholar 

  • Hollister LS, Grissom GC, Peters EK, Stowell HH, Sisson VB (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72:231–239

    Google Scholar 

  • Ilbeyli N, Pearce JA (2005) Petrogenesis of igneous enclaves in plutonic rocks of the Central Anatolian Massif, Turkey. Intern Geol Rev 47:1011–1034

    Article  Google Scholar 

  • Jacobs DC, Parry WT (1979) Geochemistry of biotite in the Santa Rita Porphyry copper deposit, New Mexico. Econ Geol 74:860–887

    Article  Google Scholar 

  • Johnson MC, Rutherford MJ (1989) Experimental calibration of the aluminium-in hornblende geobarometer with applications to Long Valley caldera (California) volcanic rocks. Geology 17:837–841

    Article  Google Scholar 

  • Kadioglu YK, Dilek Y (2009) Structure and geochemistry of the adakitic Horoz granitoid, Bolkar Mountains, south-central Turkey, and its tectonomagmatic evolution. Intern Geol Rev 52:505–535

    Article  Google Scholar 

  • Kadioglu YK, Gulec N (1999) Types and genesis of the enclaves in central Anatolian granitoids. Geol J 34:243–256

    Article  Google Scholar 

  • Kaygusuz A, Aydıncakır E (2009) Mineralogy, whole-rock and Sr–Nd isotope geochemistry of mafic microgranular enclaves in Cretaceous Dagbasi granitoids, Eastern Pontides, NE Turkey: evidence of magma mixing, mingling and chemical equilibration. Chem Erde 69(3):247–277

    Article  Google Scholar 

  • King BC (1964) The nature of basic igneous rocks and their relations with associated acid rocks. Sci Prog 52:282–292

    Google Scholar 

  • Kocak K (2000) Horoz granodiyoritlerinin jeokimyası, N.Ü.Aksaray Müh. Fak., Jeoloji Müh Böl.&Sedimantaloji çalışma gurubu, Haymana-Tuzgölü-Ulukışla basenlerinin uygulamalı çalışması (workshop), 42

  • Kocak K (2006) Hybridization of mafic microgranular enclaves: mineral and whole-rock chemistry evidence from the Karamadazi Granitoid, Central Turkey. Intern J Earth Sci 95:587–607

    Article  Google Scholar 

  • Leake BE, Woolley AR, Arps CES et al (1997) Nomenclature of amphiboles: report of the subcomittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Am Mineral 82:1019–1037

    Google Scholar 

  • Luhr JF (1992) Slab-derived fluids and partial melting in subduction zones: insights from two contrasting Mexican volca noes _Colima and Ceboruco. J Volcanol Geotherm Res 54:1–18

    Article  Google Scholar 

  • Merzbacher C, Eggler DH (1984) A magmatic geohygrometer: application to Mount St. Helens and other dacitic magmas. Geology 12:587–590

    Article  Google Scholar 

  • Michael PJ (1991) Intrusion of basaltic magma into a crystallizing granitic magma chamber: the Cordillera del Paine pluton in southern Chile. Contrib Mineral Petrol 108:396–418

    Article  Google Scholar 

  • Naney MT (1983) Phase equilibria of rock-forming ferromagnesian silicates in granitic systems. Am J Sci 283:993–1033

    Article  Google Scholar 

  • Neiva AMR (1981) Geochemistry of hybrid granitoid rocks and of their biotites from Central Northern Portugal and their petrogenesis. Lithos 14:149–163

    Article  Google Scholar 

  • Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Mineral 77:1242–1249

    Google Scholar 

  • Noyes HJ, Frey FA, Wones DR (1983) A tale of two plutons: geochemical evidence bearing on the origin and differentiation of the Red Lake and Eagle Peak plutons, Central Sierra Nevada, California. J Geol 91:487–509

    Article  Google Scholar 

  • Parlak O, Karaoğlan F, Klötzli U, Koller F, Rizaoğlu T (2010) Geochronology of Turkish ophiolites: La-ICP-MS zircon U-Pb ages from the Inner Tauride and Bitlis-Zagros Suture Zones. 7th International Symposium on Eastern Mediterranean Geology, 18-20th October, Adana-Turkey

  • Perugini D, Poli G, Christofides G, Eleftheriadis G (2003) Magma mixing in the Sithonia plutonic complex, Greece: evidence from mafic microgranular enclaves. Mineral Petrol 78:173–200

    Article  Google Scholar 

  • Pringle GJ, Trembath LT, Parjari GE Jr (1974) Crystallization history of a zoned plagioclase. Mineral Mag 39:867–877

    Article  Google Scholar 

  • Qin JF, Lai SC, Diwu CR et al (2009) Magma mixing origin for the post-collisional adakitic monzogranitegranite of the Triassic Yangba pluton, Northwestern margin of the South China block: geochemistry, Sr–Nd isotopic, zircon U–Pb dating and Hf isotopic evidences. Contrib Mineral Petrol 159:389–409

    Article  Google Scholar 

  • Reid JB, Evans OC, Fates DG (1983) Magma mixing in granitic rocks of the central Sierra Nevada, California. Earth Planet Sci Lett 66:243–261

    Article  Google Scholar 

  • Rieder M (2001) Mineral nomenclature in the mica group: the promise and the reality. Eur J Mineral 13:1009–1012

    Article  Google Scholar 

  • Schmidt MW (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in- hornblende barometer. Contrib Mineral Petrol 110:304–310

    Article  Google Scholar 

  • Sengor AMC, Yilmaz Y (1981) Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75:181–241

    Article  Google Scholar 

  • Silva MMVG, Neiva AMR, Whitehouse MJ (2000) Geochemistry of enclaves and host granites from the Nelas area, central Portugal. Lithos 50:153–170

    Article  Google Scholar 

  • Sparks RSJ, Marshall A (1986) Thermal and mechanical constraints on mixing between mafic and silicic magmas. J Volc Geotherm Res 29:99–124

    Article  Google Scholar 

  • Stomer JC (1972) Mineralogy and Petrology of the Raton-Clayton volcanic field, northeastern New Mexico. Geol Soc Am Bull 83:3299–3322

    Article  Google Scholar 

  • Thomas WM, Ernst WG (1990) The aluminium content of hornblende in calc-alkaline granitic rocks: a mineralogic barometer calibrated experimentally to 12 kbar. In: Spencer RJ, Chou IM (eds) Fluid-mineral interactions: a tribute to HP Eugster. Geochem Soc Spec Publ 2:59–63

  • Tischendorf G, Gottesmann B, Förster HJ, Trumbull RB (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and improved diagram for graphical representation. Mineral Mag 61:809–834

    Article  Google Scholar 

  • Tsuchiyama A (1985) Dissolution kinetics of plagioclase in melt of the system diopside-albite-anorthite and the origin of dusty plagioclase in andesites. Contrib Mineral Petrol 89:1–16

    Article  Google Scholar 

  • Vernon RH (1983) Restite, xenoliths and microgranitoid enclaves in granites. J Proc R Soc N S W 116:77–103

    Google Scholar 

  • Vernon RH (1984) Microgranitoid enclaves: globules of hybrid magma quenched in a plutonic environment. Nature 304:438–439

    Article  Google Scholar 

  • Vernon RH (1990) Crystallization and hybridism in microgranitoid enclave magmas: microstructural evidence. J Geophys Res 95:17849–17859

    Article  Google Scholar 

  • Vernon RH (1991) Interpretation of microstructures of microgranitoid enclaves. In: Didier J, Barbarin B (Eds), Enclaves and Granite Petrology. Developments in Petrology, vol. 13. Elsevier, Amsterdam, pp. 277–291.

  • Vernon RH, Etheridge ME, Wall VJ (1988) Shape and microstructure of microgranitoid enclaves: indicators of magma mingling and flow. Lithos 22:1–11

    Article  Google Scholar 

  • Waight TE, Maas R, Nicholls IA (2001) Geochemical investigations of microgranitoid enclaves in the S-type Cowra Granodiorite, Lachlan Fold Belt, SE Australia. Lithos 56:165–186

    Article  Google Scholar 

  • Wall VJ, Clemens JD, Clarke DB (1987) Models for granitoid evolution and source compositions. J Geol 95:731–749

    Article  Google Scholar 

  • White RV, Tarney J, Kerr AC, Saunders AD, Kempton PD, Pringle MS, Klaver GT (1999) Modification of an oceanic plateau, Aruba, Dutch Caribbean: implications for the generation of continental crust. Lithos 46:43–68

    Article  Google Scholar 

  • Wiebe RA (1968) Plagioclase stratigraphy: a record of magmatic conditions and events in a granite stock. Am J Sci 266:690–703

    Article  Google Scholar 

  • Wiebe RA (1994) Silicic magma chambers as traps for basaltic magmas: the Cadillac Mountain Intrusive Complex, Mount Desert Island, Maine. J Geol 102:423–437

    Article  Google Scholar 

  • Wiebe RA (1996) Mafic–silicic layered intrusions; the role of basaltic injections on magmatic processes and the evolution of silicic magma chambers. In: Brown M, Candela PA, Peck DL, Stephens WE, Walker RJ, Zen E (eds) The Third Hutton Symposium on the Origin of Granites and Related Rocks. Geol Soc Am 315:233–242

  • Wiebe RA, Collins WJ (1998) Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. J Struct Geol 20:1273–1289

    Article  Google Scholar 

  • Wiebe RA, Smith D, Sturn M, King EM (1997) Enclaves in the Cadillac mountain granite (Coastal Maine): samples of hybrid magma from the base of the chamber. J Petrol 38:393–426

    Article  Google Scholar 

  • Wones DR, Eugster HP (1965) Stability of biotite: experiment, theory, and application. Am Mineral 50:1228–1272

    Google Scholar 

  • Wyllie PJ, Cox KG, Biggar GM (1962) The habit of apatite in synthetic systems and igneous rocks. J Petrol 3:238–243

    Google Scholar 

  • Yang JH, Wu FY, Chung SL (2006) A hybrid origin for the Qianshan A-type granite, northeast China: geochemical and Sr–Nd–Hf isotopic evidence. Lithos 89:89–106

    Article  Google Scholar 

  • Yang JH, Fu-Yuan Wu FY, Wilde SA et al (2007) Tracing magma mixing in granite genesis: in situ U–Pb dating and Hf-isotope analysis of zircons. Contrib Mineral Petrol 153:177–190

    Article  Google Scholar 

  • Yavuz F (2003) Evaluating micas in petrologic and metallogenic aspect: Part II—Applications using the computer program Mica+. Comp Geosci 279:1215–1228

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Office of Scientific Research (Bu calısma Selcuk Universitesi Bilimsel Arastırma Projeleri tarafından desteklenmistir. BAP; Project number: 5401041; Selcuk university; Turkey). The authors would like thank Bernard Barbarin and an anonymous reviewer for useful reviews of the manuscript and Associate Editor Ralf Milke for editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerim Kocak.

Additional information

Editorial handling: R. Milke

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kocak, K., Zedef, V. & Kansun, G. Magma mixing/mingling in the Eocene Horoz (Nigde) granitoids, Central southern Turkey: evidence from mafic microgranular enclaves. Miner Petrol 103, 149–167 (2011). https://doi.org/10.1007/s00710-011-0165-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-011-0165-7

Keywords

Navigation