Skip to main content
Log in

Lightning-strike fusion of gabbro and formation of magnetite-bearing fulgurite, Cornone di Blumone, Adamello, Western Alps, Italy

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Adamello gabbro exposed on the summit of Cornone di Blumone, Western Alps, Italy, has been fused by lightning strikes to form magnetite-rich fulgurites produced by melting of magnetite, hornblende, calcic plagioclase and minor clinopyroxene. The composition of quench magnetite in the fulgurite is 44.4 Fe3O4; 27.5 MgFe2O4; 15.1 FeAl2O4; 7.9 Fe2TiO4; 2.5 Fe2SiO4; 1.9 CaFe2O4; 0.8 MnFe2O4 and is inferred to have crystallized from a low-Si, Fe-rich melt under high oxidation conditions of about 1 log unit below the log10ƒO2 of hematite–magnetite. The low Si, Fe-rich melt is considered to have been produced from fusion of magnetite + hornblende-rich areas of the host gabbro and/or possible separation of an immiscible high Fe2O3/FeO Fe-rich, low-Si melt from a more siliceous glass during superheating. Skeletal-dendritic morphologies of magnetite in the fulgurite indicate crystallization under conditions of extreme supercooling. Juxtaposition of areas exhibiting different growth habits and crystal sizes of magnetite may reflect compositionally different local melt domains and/or small differences in the delicate balance between nucleation and growth in domains that had slightly different, although ultrafast, cooling rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ablesimov NYe, Tsyurupa AI, Lipatov VG (1986) Phase and element ratios upon fulguritization of basalt. Trans (Dokl) USSR Acad Sci Earth Sci Sect 290:161–164

    Google Scholar 

  • Bohor BF, Foord EE, Ganapathy R (1986) Magnesioferrite from the Cretaceous-Tertiary boundary, Caravaca, Spain. Earth Planet Sci Lett 81:57–66

    Article  Google Scholar 

  • Borucki WJ, Chameides WL (1984) Lightning: estimates of the rates of energy dissipation and nitrogen fixation. Rev Geophys Space Phys 22:363–372

    Article  Google Scholar 

  • Bowen NL (1913) The melting behavior of plagioclase feldspars. Am J Sci 35:577–599

    Google Scholar 

  • Cardona MR, Castro KF, Garcia PPC, Hernandez LEO (2006) Mineralogical study of binary iron silicides (Fe–Si system) in a fulgurite from Hidalgo, Mexico. Bol Minerol 17:69–76

    Google Scholar 

  • Clocchiatii R (1990) Les fugurites et roches vitrifiées de l’Etna. Eur J Mineral 2:479–494

    Google Scholar 

  • Essene EJ, Fischer DC (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234:189–193

    Article  Google Scholar 

  • Frenzel G, Ottemann J (1978) Über Blitzgläser vom Katzenbuckel, Odenwald, und ihre Ähnlichkeit mit Tektiten. Neues Jahrbuch Mineral Monatsh 10:439–446

    Google Scholar 

  • Frenzel G, Stähle V (1982) Fulgurite glass on peridotite from near Frankenstein near Darmstadt. Chem Erde 41:111–119

    Google Scholar 

  • Frenzel G, Stähle V (1984) Über Aluminosilikatglas mit Lechatelierit-Einschlüssen von einer Fulguritröhre des Hahnenstockes (Glarner Freiburg, Schweiz). Chem Erde 43:17–26

    Google Scholar 

  • Frenzel G, Irouschek-Zumthor A, Stähle V (1989) Stoβwellenmetamorphose, Aufschmelzung and Verdampfung bei Fulguritbildung an exponierten Berggipfeln. Chem Erde 49:265–286

    Google Scholar 

  • Garcia-Guinea J, Furio M, Fernandez-Hernan M, Bustillo MA, Crespo-Feo E, Correcher V, Sanchez-Muñoz L, Matesanz E (2009) The quartzofeldspathic fulgurite of Bustaviejo (Madrid): glassy matrix and silicon phases. Micro-Raman Spectroscopy and Luminescence Studies 3011. pdf

  • Ghiorso MS, Sack RO (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid–solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Hill R, Roeder P (1974) The crystallization of spinel from basaltic liquid as a function of oxygen fugacity. J Geol 82:709–729

    Article  Google Scholar 

  • Jak E, Degterov S, Hayes PC, Pelton AD (1998) Thermodynamic modeling of the system Al2O3-SiO2-CaO-FeO-Fe2O3 to predict the flux requirement from coal ash slags. Fuel 77:77–84

    Article  Google Scholar 

  • Kutchko BG, Kim AGK (2006) Fly ash characterization by SEM-EDS. Fuel 85:2537–2544

    Article  Google Scholar 

  • Kyte FT, Bostwick JA (1995) Magnesioferrite spinel in Cretaceous/Tertiary boundary sediments of the Pacific basin: remnants of hot, early ejecta from the Chicxulub impact? Earth Planet Sci Lett 132:113–127

    Article  Google Scholar 

  • Lysiuk AY, Lysiuk GN (2005) Spectroscopy of the fulgurite glasses. Geophys Res Abs 7:00682

    Google Scholar 

  • Muan A (1956) Phase equilibria at liquidus temperatures in the system iron oxide-Al2O3-SiO2 in air atmosphere. Am Ceram Soc J 40:121–133

    Article  Google Scholar 

  • Muan A, Osborn EF (1956) Phase equilibria at liquidus temperatures in the system MgO-FeO-Fe2O3-SiO2. Am Ceram Soc J 39:121–140

    Article  Google Scholar 

  • Parnell J, Thackery S, Muirhead D, Wright A (2008) Transient high-temperature processing of silicates in fulgurites as analogues for meteorite and impact melts. Lunar Planet Sci XXXIX:1286

    Google Scholar 

  • Pouchou J-L, Pichior F (1991) Quantitative analyses of homogeneous or stratified microvolumes applying the model of “PAP”. In: Heinrich KFJ, Newberry DE (eds) Electron probe quantitation. Plenum, New York, pp 31–75

    Google Scholar 

  • Rietmeijer FJM (1996) The ultrafine mineralogy of a molten interplanetary dust particle as an example of the quench regime of atmosphere entry heating. Meteorit Planet Sci 31:237–242

    Google Scholar 

  • Robin E, Bonté Ph, Froget L, Jéhanno C, Rocchia R (1992) Formation of spinels in cosmic objects during atmospheric entry: a clue to the Cretaceous-Tertiary boundary event. Earth Planet Sci Lett 108:181–190

    Article  Google Scholar 

  • Sheffer AA, Dyar MD, Sklute EC (2006) Lightning strike glasses as an analog for impact glasses: 57Mossbauer spectroscopy of fulgurites. Lunar Planet Sci XXXVII: 2009.pdf

  • Sokol EV, Kalugin VM, Nigmatulina EN, Volkova NI, Frenkel AE, Maksimova NV (2002) Ferrospheres from fly ashes of Chelyabinsk coals: chemical composition, morphology and formation conditions. Fuel 81:867–876

    Article  Google Scholar 

  • Sulovský P (2002) Mineralogy and chemistry of conventional and fluidized bed coal ashes. BullCzech Geol Sur 77:1–11

    Google Scholar 

  • Switzer G, Melson WG (1968) Origin and composition of rock fulgurite glass. Smithsonian Contrib Earth Sci 9:47–51

    Google Scholar 

  • Uman MA (1969) Lightning. Advanced physics. Monograph. McGraw-Hill, New York

    Google Scholar 

  • Uman MA, Beasley WH, Tiller JA, Lin Y-T, Krider EPh, Weidmann ChD, Krehbiel PR, Brook M, Few AA Jr, Bohannon JI, Lennon CL, Poehler HA, Jafferis W, Gulick JR, Nicholson JR (1978) An unusual lightning flash at Kennedy Space Centre. Science 201:9–16

    Article  Google Scholar 

  • Wasserman H, Melosh J, Lauretta DS (2002) Fulgurites: a look at transient high temperature processes in silicates. Lunar Planet Sci XXXIII: 1308.pdf

  • Wimmenauer W (2006) Vorkommen und Strukturen von Fulguriten im Schwarzwald. Aufschluss 57:325–328

    Google Scholar 

  • Yu Y, Hewins RH (1998) Transient heating and chondrule formation: evidence from sodium loss in flash heating simulation experiments. Geochim Cosmochim Acta 62:159–172

    Article  Google Scholar 

  • Zhao Y, Zhang J, Sun J, Bai X, Zheng C (2006) Mineralogy, chemical composition, and microstructures of ferrospheres in fly ashes from coal combustion. Energy Fuel 20:1490–1497

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Institut für Geowissenschaften (Albert-Ludwigs-Universität Freiburg) personnel: Daniel Weidenmann for collecting fused gabbro from the summit of Cornone di Blumone; Isolde Schmidt for XRF analyses; and Sigrid Hirth-Walther for FeO, H2O+ and CO2 determination. The paper was considerably improved by the constructive comments and suggestions by two anonymous reviewers to whom we are grateful. One reviewer is thanked for kindly providing a comprehensive reference list of publications on fulgurites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney H. Grapes.

Additional information

Editorial handling: J.G. Raith

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grapes, R.H., Müller-Sigmund, H. Lightning-strike fusion of gabbro and formation of magnetite-bearing fulgurite, Cornone di Blumone, Adamello, Western Alps, Italy. Miner Petrol 99, 67–74 (2010). https://doi.org/10.1007/s00710-009-0100-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-009-0100-3

Keywords

Navigation