Skip to main content
Log in

Proteolytic activities in cortex of apical parts of Vicia faba ssp. minor seedling roots during kinetin-induced programmed cell death

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Programmed cell death (PCD) is a crucial process in plant development. In this paper, proteolytically related aspects of kinetin-induced PCD in cortex cells of Vicia faba ssp. minor seedlings were examined using morphological, fluorometric, spectrophotometric, and fluorescence microscopic analyses. Cell viability estimation after 46 μM kinetin treatment of seedling roots showed that the number of dying cortex cells increased with treatment duration, reaching maximum after 72 h. Weight of the apical root segments increased with time and was about 2.5-fold greater after 96 h, while the protein content remained unchanged, compared to the control. The total and cysteine-dependent proteolytic activities fluctuated during 1–96-h treatment, which was not accompanied by the changes in the protein amount, indicating that the absolute protein amounts decreased during kinetin-induced PCD. N-ethylmaleimide (NEM), phenylmethylsulfonyl fluoride (PMSF), and Z-Leu-Leu-Nva-H (MG115), the respective cysteine, serine, and proteasome inhibitors, suppressed kinetin-induced PCD. PMSF significantly decreased serine-dependent proteolytic activities without changing the amount of proteins, unlike NEM and MG115. More pronounced effect of PMSF over NEM indicated that in the root apical segments, the most important proteolytic activity during kinetin-induced PCD was that of serine proteases, while that of cysteine proteases may be important for protein degradation in the last phase of the process. Both NEM and PMSF inhibited apoptotic-like structure formation during kinetin-induced PCD. The level of caspase-3-like activity of β1 proteasome subunit increased after kinetin treatment. Addition of proteasome inhibitor MG-115 reduced the number of dying cells, suggesting that proteasomes might play an important role during kinetin-induced PCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ctrl:

control

Kin:

Kinetin

MG115:

Z-Leu-Leu-Nva-H

NEM:

N-ethylmaleimide

PCD:

Programmed cell death

PMSF:

Phenylmethylsulfonyl fluoride

References

  • Aleksandrushkina NI, Vanyushin BF (2009) Endonucleases and their involvement in plant apoptosis. Russ J Plant Physiol 56:291–305

    Article  CAS  Google Scholar 

  • Barciszewski J, Massino F, Clark BFC (2007) Kinetin—a multiactive molecule. Inter J Biol Macromol 40:182–192

    Article  CAS  Google Scholar 

  • Beynon R, Bond JS (1999) Proteolytic enzymes, IInd edn. Oxford University press, Oxford

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Byczkowska A, Kunikowska A, Kaźmierczak A (2013) Determination of ACC-induced cell-programmed death in roots of Vicia faba ssp. minor seedlings by acridine orange and ethidium bromide staining. Protoplasma 250:121–128

    Article  CAS  PubMed  Google Scholar 

  • Cacas JL (2010) Devil inside: does plant programmed cell death involve the endomembrane system? Plant Cell Environ 33:1453–1473

    CAS  PubMed  Google Scholar 

  • Cai YM, Yu J, Gallois P (2014) Endoplasmic reticulum stress-induced PCD and caspase-like activities involved. Front Plant Sci 5:41–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Chichkova NV, Shaw J, Galiullina RA, Drury GE, Tuzhikov AI, Kim SH, Kalkum M, Hong TB, Gorshkova EN, Torrance L, Vartapetian AB, Taliansky M (2010) Phytaspase, a relocalisable cell death promoting plant protease with caspase specificity. The EMBO J 29:1149–1161

    Article  CAS  PubMed  Google Scholar 

  • Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collazo C, Chacon O, Boras O (2006) Programmed cell death in plants resembles apoptosis of animals. Biotecnol Aplic 23:1–10

    Google Scholar 

  • Conradt B, Xue D (2005) Programmed cell death. In: Wormbook. The C. elegans Research Community, Wormbook. doi:10.1895/wormbook.1.32.1

  • Dhyèvre A, Foltête AS, Aran D, Muller S, Cotelle S (2014) Effects of soil pH on the Vicia-micronucleus genotoxicity assay. Mutation Res 774:17–21

    Article  Google Scholar 

  • Domínguez F, Cejudo FJ (2012) A comparison between nuclear dismantling during plant and animal programmed cell death. Plant Sci 197:114–121

    Article  PubMed  Google Scholar 

  • Doniak M, Barciszewska MZ, Kaźmierczak J, Kaźmierczak A (2014) The crucial elements of the ‘last step’ of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. Plant Cell Rep 33:2063–2067

    Article  CAS  PubMed  Google Scholar 

  • Doniak M, Byczkowska A, Kaźmierczak A (2016) Kinetin-induced programmed cell death of cortex cells is mediated by ethylene and calcium ions in roots of Vicia faba ssp. minor. Plant Growth Regul 78:335–343

    Article  CAS  Google Scholar 

  • Doniak M, Kaźmierczak A, Byczkowska A, Glińska S (2017) Reactive oxygen species and sugars may be the messengers in kinetin-induced death of root cortex cells of V. faba ssp. minor seedlings. Biol Plant. doi:10.1007/s10535-016-0654-y

  • Drew MC, He CJ, Morgan PW (2000) Programmed cell death and aerenchyma formation in roots. Trends Plant Sci 5:123–127

    Article  CAS  PubMed  Google Scholar 

  • Fernández MB, Daleo GR, Guevara MG (2012) DEVDase activity is induced in potato leaves during Phytophthora infestans infection. Plant Physiol Biochem 61:197–203

    Article  PubMed  Google Scholar 

  • Fritz H, Rrautshold I, Werle E (1974) Protease inhibitors. In: Bergmeyer HU (ed) Methods enzymatic analysis. T. 2. Acad. Press, New York

    Google Scholar 

  • Fukuda H (2016) Signaling, transcriptional regulation, and asynchronous pattern formation governing plant xylem development. Proc Jpn Acad Ser B 92. doi:10.2183/pjab.92.98

  • Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM et al (2015) Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ 22:58–73

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, López-Soto A, Kumar S, Kroemer G (2016) Caspases connect cell-death signaling to organismal homeostasis. Immunity 44:221–231

    Article  CAS  PubMed  Google Scholar 

  • Ge ZQ, Yang S, Cheng JS, Yuan YJ (2005) Signal role for activation of caspase-3-like protease and burst of superoxide anions during Ce4+-induced apoptosis of cultured Taxus cuspidata cells. Biometals 18:221–232

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena AH (2008) Programmed cell death and tissue remodelling in plants. J Exp Bot 59:445–451

    Article  CAS  PubMed  Google Scholar 

  • Han JJ, Lin W, Oda Y, Cui KM, Fukuda H, He X (2012) The proteasome is responsible for caspase-3-like activity during xylem development. Plant J 72:129–141

    Article  CAS  PubMed  Google Scholar 

  • Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, Nishimura M, Hara-Nishimura I (2009) A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev 23:2496–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iqbal N, Trivellini A, Masood A, Ferrante A, Khan NA (2013) Current understanding on ethylene signaling in plants: the influence of nutrient availability. Plant Physiol Biochem 73:128–138

    Article  CAS  PubMed  Google Scholar 

  • Kacprzyk J, Daly CT, McCabe PF (2011) The botanical dance of death: programmed cell death in plants. Advances Bot Res 60:169–271

    Article  CAS  Google Scholar 

  • Kunikowska A, Byczkowska A, Kaźmierczak A (2013) Kinetin induces cell death in root cortex cells of Vicia faba ssp. minor seedlings. Protoplasma 250:851–861

    Article  CAS  PubMed  Google Scholar 

  • Kuranaga E (2012) Beyond apoptosis: caspase regulatory mechanisms and functions in vivo. Genes Cells 17:83–97

    Article  CAS  PubMed  Google Scholar 

  • Kurepa J, Smalle JA (2008) Structure, function and regulation of plant proteasomes. Biochimie 90:324–335

    Article  CAS  PubMed  Google Scholar 

  • Moravec R, O’Brien MA, Daily WJ, Scurria MA, Bernad L, Riss TL (2009) Cell-based bioluminescent assays for all three proteasome activities in a homogeneous format. Anal Biochem 387:294–302

    Article  CAS  PubMed  Google Scholar 

  • Pesquet E, Tuominen H (2011) Ethylene stimulates tracheary element differentiation in Zinnia elegans cell cultures. New Phytol 190:138–149

    Article  CAS  PubMed  Google Scholar 

  • Poór P, Kovács J, Szopkó D, Tari I (2012) Ethylene signaling in salt stress- and salicylic acid-induced programmed cell death in tomato suspension cells. Protoplasma 250:273–284

    Article  PubMed  Google Scholar 

  • Reape TJ, McCabe PF (2008) Apoptotic-like programmed cell death in plants. New Phytol 180:13–26

    Article  CAS  PubMed  Google Scholar 

  • Reape TJ, McCabe PF (2010) Apoptotic-like regulation of programmed cell death in plants. Apoptosis 15:249–256

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto W, Takami T (2014) Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. J Exp Bot 65:3835–3843

    Article  PubMed  Google Scholar 

  • Schaller A, Stintzi A, Graff L (2012) Subtilases—versatile tools for protein turnover, plant development, and interactions with the environment. Physiol Plant 145:52–66

    Article  CAS  PubMed  Google Scholar 

  • Secades P, Guijarro J (1999) Purification and characterization of an extracellular protease from the fish pathogen Yersinia ruckeri and effect of culture conditions on production. Appl Environ Microbiol 65:3969–3975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu N (2011) Molecular mechanisms of the origin of micronuclei from extrachromosomal elements. Mutagenesis 26:119–123

    Article  CAS  PubMed  Google Scholar 

  • Twumasi P, Iakimova ET, Qian T, van Ieperen W, Schel JHN, Emons AMC, van Kooten O, Woltering EJ (2010) Caspase inhibitors affect the kinetics and dimensions of tracheary elements in xylogenic Zinnia (Zinnia elegans) cell cultures. BMC Plant Biol 10:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Vacca RA, Valenti D, Bobba A, de Pinto MC, Merafina RS, De Garab L, Passarella S, Marra E (2007) Proteasome function is required for activation of programmed cell death in heat shocked tobacco Bright-Yellow 2 cells. FEBS Lett 581:917–922

    Article  CAS  PubMed  Google Scholar 

  • Van Doorn WG (2005) Plant programmed cell death and the point of no return. Trends Plant Sci 10:478–483

    Article  CAS  PubMed  Google Scholar 

  • Vartapetian B, Tuzhikov AI, Chichkova NV, Taliansky M, Wolpert TJ (2011) A plant alternative to animal caspases: subtilisin-like proteases. Cell Death Differ 18:1289–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vercammen D, van de Cotte B, De Jaeger G, Eeckhout D, Casteels P, Vandepoele K, Vandenberghe I, Van Beeumen J, Inze D, Van Breusegem F (2004) Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J Biol Chem 279:45329–45336

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Li J, Bostock RM, Gilchrista DG (1996) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams JA, Hou Y, Ni HM, Ding WX (2013) Role of intracellular calcium in proteasome inhibitor-induced endoplasmic reticulum stress, autophagy, and cell death. Pharm Res 30:2279–2289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Y, Li Z, Xing D (2013) Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium-induced Arabidopsis thaliana programmed cell death. Plant Cell Environ 36:1–15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. M. Fronczak for the help in preparing the manuscript in English. This work was supported by a grant from the University of Łódź, no. 506/1141 and no. B1551000000988.02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kaźmierczak.

Additional information

Handling Editor: Pavel Dráber

Electronic supplementary material

ESM 1

(RTF 16 kb)

Fig. S1

Simple exemplification of existence signalling, killing and execution phase of Kin-induced of death of cortex cells of the root apical segments of V. faba ssp. minor seedlings in a triangular form. The scheme shows that kinetin induced death signal via cytokinin receptors, then the proteolytic machinery is activated activating the nuclei and cell wall degradation. (GIF 36 kb)

High resolution image (TIFF 4450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaźmierczak, A., Doniak, M. & Kunikowska, A. Proteolytic activities in cortex of apical parts of Vicia faba ssp. minor seedling roots during kinetin-induced programmed cell death. Protoplasma 254, 2273–2285 (2017). https://doi.org/10.1007/s00709-017-1119-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-017-1119-7

Keywords

Navigation