Skip to main content
Log in

Regulation of microtubule nucleation mediated by γ-tubulin complexes

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The microtubule cytoskeleton is critically important for spatio-temporal organization of eukaryotic cells. The nucleation of new microtubules is typically restricted to microtubule organizing centers (MTOCs) and requires γ-tubulin that assembles into multisubunit complexes of various sizes. γ-Tubulin ring complexes (TuRCs) are efficient microtubule nucleators and are associated with large number of targeting, activating and modulating proteins. γ-Tubulin-dependent nucleation of microtubules occurs both from canonical MTOCs, such as spindle pole bodies and centrosomes, and additional sites such as Golgi apparatus, nuclear envelope, plasma membrane-associated sites, chromatin and surface of pre-existing microtubules. Despite many advances in structure of γ-tubulin complexes and characterization of γTuRC interacting factors, regulatory mechanisms of microtubule nucleation are not fully understood. Here, we review recent work on the factors and regulatory mechanisms that are involved in centrosomal and non-centrosomal microtubule nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AKAP450:

A-kinase anchor protein 450

Cdk1:

Cyclin-dependent kinase 1

CDK5RAP2:

Cyclin-dependent kinase 5 regulatory subunit-associated protein 2

CLASP:

Cytoplasmic linker associated protein

CM1:

Centrosomin (Cnn) motif 1

EBs:

End-binding proteins

γTuRC:

γ-Tubulin ring complex

γTuSC:

γ-Tubulin small complex

GCPs:

γ-Tubulin complex proteins

GIPs:

γ-Tubulin complex protein 3-interacting proteins

GM130:

Golgin subfamily A member 2 protein

GRIPs:

γ-Tubulin ring proteins

Mozart:

Mitotic spindle-organizing protein

MTOC:

Microtubule-organizing center

NEDD1:

Neural precursor cell expressed, developmentally down-regulated protein 1

NME7:

Nucleoside-diphosphate kinase 7

PCM:

Pericentriolar material

Plk1:

Polo-like kinase 1

Ran:

Ras-related nuclear protein

SAFs:

Spindle assembly factors

SPB:

Spindle pole body

+TIPs:

Microtubule plus-end tracking proteins

TPX2:

Targeting protein for Xklp2

References

  • Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16:711–726

    Article  CAS  PubMed  Google Scholar 

  • Ambrose C, Wasteneys GO (2011) Cell edges accumulate gamma tubulin complex components and nucleate microtubules following cytokinesis in Arabidopsis thaliana. PLoS One 6:e27423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ambrose C, Wasteneys GO (2014) Microtubule initiation from the nuclear surface controls cortical microtubule growth polarity and orientation in Arabidopsis thaliana. Plant Cell Physiol 55:1636–1645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartolini F, Gundersen GG (2006) Generation of noncentrosomal microtubule arrays. J Cell Sci 119:4155–4163

    Article  CAS  PubMed  Google Scholar 

  • Batzenschlager M, Masoud K, Janski N, Houlné G, Herzog E, Evrard JL, Baumberger N, Erhardt M, Nominé Y, Kieffer B, Schmit AC, Chabouté ME (2013) The GIP γ-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana. Front Plant Sci 4:480

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellouze S, Schäfer MK, Buttigieg D, Baillat G, Rabouille C, Haase G (2014) Golgi fragmentation in pmn mice is due to a defective ARF1/TBCE cross-talk that coordinates COPI vesicle formation and tubulin polymerization. Hum Mol Genet 23:5961–5975

    Article  CAS  PubMed  Google Scholar 

  • Binarová P, Doležel J, Dráber P, Heberle-Bors E, Strnad M, Bögre L (1998) Treatment of Vicia faba root tip cells with specific inhibitors to cyclin-dependent kinases leads to abnormal spindle formation. Plant J 16:697–707

    Article  PubMed  Google Scholar 

  • Binarová P, Cenklová V, Hause B, Kubátová E, Lysák M, Doležel J, Bögre L, Dráber P (2000) Nuclear γ-tubulin during acentriolar plant mitosis. Plant Cell 12:433–442

    PubMed  PubMed Central  Google Scholar 

  • Bugnard E, Zaal KJ, Ralston E (2005) Reorganization of microtubule nucleation during muscle differentiation. Cell Motil Cytoskeleton 60:1–13

    Article  PubMed  Google Scholar 

  • Carazo-Salas RE, Guarguaglini G, Gruss OJ, Segref A, Karsenti E, Mattaj IW (1999) Generation of GTP-bound ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400:178–181

    Article  CAS  PubMed  Google Scholar 

  • Casanova CM, Rybina S, Yokoyama H, Karsenti E, Mattaj IW (2008) Hepatoma up-regulated protein is required for chromatin-induced microtubule assembly independently of TPX2. Mol Biol Cell 19:4900–4908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Černohorská M, Sulimenko V, Hájková Z, Sulimenko T, Sládková V, Vinopal S, Dráberová E, Dráber P (2016) GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation. BBA Mol Cell Res 1863:1282–1297

    Google Scholar 

  • Chabin-Brion K, Marceiller J, Perez F, Settegrana C, Drechou A, Durand G, Poüs C (2001) The Golgi complex is a microtubule-organizing organelle. Mol Biol Cell 12:2047–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YK, Liu P, Sze SK, Dai C, Qi RZ (2010) CDK5RAP2 stimulates microtubule nucleation by the γ-tubulin ring complex. J Cell Biol 191:1089–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delgehyr N, Sillibourne J, Bornens M (2005) Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J Cell Sci 118:1565–1575

    Article  CAS  PubMed  Google Scholar 

  • Dhani DK, Goult BT, George GM, Rogerson DT, Bitton DA, Miller CJ, Schwabe JW, Tanaka K (2013) Mzt1/Tam4, a fission yeast MOZART1 homologue, is an essential component of the γ-tubulin complex and directly interacts with GCP3(Alp6). Mol Biol Cell 24:3337–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dráber P, Dráberová E (2012) Microtubules. In: Kavallaris M (ed) Cytoskeleton and human disease. Humana Press, New York, pp 29–55

    Chapter  Google Scholar 

  • Dráberová L, Dráberová E, Surviladze Z, Dráber P, Dráber P (1999) Protein tyrosine kinase p53/p56(lyn) forms complexes with γ-tubulin in rat basophilic leukemia cells. Int Immunol 11:1829–1839

    Article  PubMed  Google Scholar 

  • Dráberová E, D'Agostino L, Caracciolo V, Sládková V, Sulimenko T, Sulimenko V, Sobol M, Maounis NF, Tzelepis E, Mahera E, Křen L, Legido A, Giordano A, Mörk S, Hozák P, Dráber P, Katsetos CD (2015) Overexpression and nucleolar localization of γ-tubulin small complex proteins GCP2 and GCP3 in glioblastoma. J Neuropathol Exp Neurol 74:723–742

    Article  PubMed  CAS  Google Scholar 

  • Dryková D, Cenklová V, Sulimenko V, Volc J, Dráber P, Binarová P (2003) Plant gamma-tubulin interacts with alphabeta-tubulin dimers and forms membrane-associated complexes. Plant Cell 15:465–480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dyachuk V, Bierkamp C, Merdes A (2016) Non-centrosomal microtubule organization in differentiated cells. In: Lüders J (ed) The microtubule cytoskeleton. Springer-Verlag, Wien, pp 27–42

    Chapter  Google Scholar 

  • Edzuka T, Yamada L, Kanamaru K, Sawada H, Goshima G (2014) Identification of the augmin complex in the filamentous fungus Aspergillus nidulans. PLoS One 9:e101471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR 3rd, Maiato H, Khodjakov A, Akhmanova A, Kaverina I (2007) Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell 12:917–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erhardt M, Stoppin-Mellet V, Campagne S, Canaday J, Mutterer J, Fabian T, Sauter M, Muller T, Peter C, Lambert AM, Schmit AC (2002) The plant Spc98p homologue colocalizes with γ-tubulin at microtubule nucleation sites and is required for microtubule nucleation. J Cell Sci 115:2423–2431

    CAS  PubMed  Google Scholar 

  • Fant X, Gnadt N, Haren L, Merdes A (2009) Stability of the small γ-tubulin complex requires HCA66, a protein of the centrosome and the nucleolus. J Cell Sci 122:1134–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farache D, Jauneau A, Chemin C, Chartrain M, Rémy MH, Merdes A, Haren L (2016) Functional analysis of γ-tubulin complex proteins indicates specific lateral association via their N-terminal domains. J Biol Chem 291:23112–23125

    Article  CAS  PubMed  Google Scholar 

  • Findeisen P, Mühlhausen S, Dempewolf S, Hertzog J, Zietlow A, Carlomagno T, Kollmar M (2014) Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol Evol 6:2274–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fogeron ML, Müller H, Schade S, Dreher F, Lehmann V, Kühnel A, Scholz AK, Kashofer K, Zerck A, Fauler B, Lurz R, Herwig R, Zatloukal K, Lehrach H, Gobom J, Nordhoff E, Lange BM (2013) LGALS3BP regulates centriole biogenesis and centrosome hypertrophy in cancer cells. Nat Commun 4:1531

    Article  PubMed  CAS  Google Scholar 

  • Fong CS, Sato M, Toda T (2010) Fission yeast Pcp1 links polo kinase-mediated mitotic entry to γ-tubulin-dependent spindle formation. EMBO J 29:120–130

    Article  CAS  PubMed  Google Scholar 

  • Gaume X, Tassin AM, Ugrinova I, Mongelard F, Monier K, Bouvet P (2015) Centrosomal nucleolin is required for microtubule network organization. Cell Cycle 14:902–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Ferreria MA, Rath U, Buster DW, Chanda SK, Caldwell JS, Rines DR, Sharp DJ (2007) Human Cep192 is required for mitotic centrosome and spindle assembly. Curr Biol 17:1960–1966

    Article  CAS  PubMed  Google Scholar 

  • Goshima G, Mayer M, Zhang N, Stuurman N, Vale RD (2008) Augmin: a protein complex required for centrosome-independent microtubule generation within the spindle. J Cell Biol 181:421–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimaldi AD, Maki T, Fitton BP, Roth D, Yampolsky D, Davidson MW, Svitkina T, Straube A, Hayashi I, Kaverina I (2014) CLASPs are required for proper microtubule localization of end-binding proteins. Dev Cell 30:343–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groen AC, Cameron LA, Coughlin M, Miyamoto DT, Mitchison TJ, Ohi R (2004) XRHAMM functions in ran-dependent microtubule nucleation and pole formation during anastral spindle assembly. Curr Biol 14:1801–1811

    Article  CAS  PubMed  Google Scholar 

  • Guerin CM, Kramer SG (2009) RacGAP50C directs perinuclear Akhmanova A and Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16:711–726

    Google Scholar 

  • Guillet V, Knibiehler M, Gregory-Pauron L, Remy MH, Chemin C, Raynaud-Messina B, Bon C, Kollman JM, Agard DA, Merdes A, Mourey L (2011) Crystal structure of γ-tubulin complex protein GCP4 provides insight into microtubule nucleation. Nat Struct Mol Biol 18:915–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunawardane RN, Lizarraga SB, Wiese C, Wilde A, Zheng Y (2000) γ-Tubulin complexes and their role in microtubule nucleation. Curr Top Dev Biol 49:55–73

    Article  CAS  PubMed  Google Scholar 

  • Hořejší B, Vinopal S, Sládková V, Dráberová E, Sulimenko V, Sulimenko T, Vosecká V, Philimonenko A, Hozák P, Katsetos CD, Dráber P (2012) Nuclear γ-tubulin associates with nucleoli and interacts with tumor suppressor protein C53. J Cell Physiol 227:367–382

    Article  PubMed  CAS  Google Scholar 

  • Hotta T, Kong Z, Ho CM, Zeng CJ, Horio T, Fong S, Vuong T, Lee YR, Liu B (2012) Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. Plant Cell 24:1494–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsia KC, Wilson-Kubalek EM, Dottore A, Hao Q, Tsai KL, Forth S, Shimamoto Y, Milligan RA, Kapoor TM (2014) Reconstitution of the augmin complex provides insights into its architecture and function. Nat Cell Biol 16:852–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inukai K, Funaki M, Nawano M, Katagiri H, Ogihara T, Anai M, Onishi Y, Sakoda H, Ono H, Fukushima Y, Kikuchi M, Oka Y, Asano T (2000) The N-terminal 34 residues of the 55 kDa regulatory subunits of phosphoinositide 3-kinase interact with tubulin. Biochem J 346(Pt 2):483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janski N, Masoud K, Batzenschlager M, Herzog E, Evrard JL, Houlné G, Bourge M, Chabouté ME, Schmit AC (2012) The GCP3-interacting proteins GIP1 and GIP2 are required for γ-tubulin complex protein localization, spindle integrity, and chromosomal stability. Plant Cell 24:1171–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffery JM, Grigoriev I, Poser I, van der Horst A, Hamilton N, Waterhouse N, Bleier J, Subramaniam VN, Maly IV, Akhmanova A, Khanna KK (2013) Centrobin regulates centrosome function in interphase cells by limiting pericentriolar matrix recruitment. Cell Cycle 12:899–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johmura Y, Soung NK, Park JE, Yu LR, Zhou M, Bang JK, Kim BY, Veenstra TD, Erikson RL, Lee KS (2011) Regulation of microtubule-based microtubule nucleation by mammalian polo-like kinase 1. Proc Natl Acad Sci U S A 108:11446–11451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalab P, Pralle A, Isacoff EY, Heald R, Weis K (2006) Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 440:697–701

    Article  CAS  PubMed  Google Scholar 

  • Khodjakov A, Rieder CL (1999) The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J Cell Biol 146:585–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilmartin JV, Goh PY (1996) Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. EMBO J 15:4592–4602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita K, Noetzel TL, Pelletier L, Mechtler K, Drechsel DN, Schwager A, Lee M, Raff JW, Hyman AA (2005) Aurora A phosphorylation of TACC3/maskin is required for centrosome-dependent microtubule assembly in mitosis. J Cell Biol 170:1047–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirik A, Ehrhardt DW, Kirik V (2012) TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells. Plant Cell 24:1158–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knop M, Schiebel E (1997) Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J 16:6985–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollman JM, Zelter A, Muller EG, Fox B, Rice LM, Davis TN, Agard DA (2008) The structure of the γ-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. Mol Biol Cell 19:207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollman JM, Polka JK, Zelter A, Davis TN, Agard DA (2010) Microtubule nucleating γ-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466:879–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollman JM, Merdes A, Mourey L, Agard DA (2011) Microtubule nucleation by γ-tubulin complexes. Nat Rev Mol Cell Biol 12:709–721

    Article  CAS  PubMed  Google Scholar 

  • Kollman JM, Greenberg CH, Li S, Moritz M, Zelter A, Fong KK, Fernandez JJ, Sali A, Kilmartin J, Davis TN, Agard DA (2015) Ring closure activates yeast γ-TuRC for species-specific microtubule nucleation. Nat Struct Mol Biol 22:132–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawo S, Hasegan M, Gupta GD, Pelletier L (2012) Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol 14:1148–1158

    Article  CAS  PubMed  Google Scholar 

  • Lin TC, Neuner A, Schlosser YT, Scharf AN, Weber L, Schiebel E (2014) Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation. Elife 3:e02208

    PubMed  PubMed Central  Google Scholar 

  • Lin TC, Neuner A, Schiebel E (2015) Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol 25:296–307

    Article  CAS  PubMed  Google Scholar 

  • Liu T, Tian J, Wang G, Yu Y, Wang C, Ma Y, Zhang X, Xia G, Liu B, Kong Z (2014) Augmin triggers microtubule-dependent microtubule nucleation in interphase plant cells. Curr Biol 24:2708–2713

    Article  CAS  PubMed  Google Scholar 

  • Lüders J, Stearns T (2007) Microtubule-organizing centres: a re-evaluation. Nat Rev Mol Cell Biol 8:161–167

    Article  PubMed  CAS  Google Scholar 

  • Lüders J, Patel UK, Stearns T (2006) GCP-WD is a γ-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat Cell Biol 8:137–147

    Article  PubMed  CAS  Google Scholar 

  • Ludueña RF, Banerjee A (2008) The isotypes of tubulin: distribution and functional significance. In: Fojo T (ed) The role of microtubules in cell biology, neurobiology and oncology. Humana Press, Totowa, pp 123–175

    Chapter  Google Scholar 

  • Lyon AS, Morin G, Moritz M, Yabut KC, Vojnar T, Zelter A, Muller E, Davis TN, Agard DA (2016) Higher-order oligomerization of Spc110p drives γ-tubulin ring complex assembly. Mol Biol Cell 27:2245–2258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macurek L, Dráberová E, Richterová V, Sulimenko V, Sulimenko T, Dráberová L, Marková V, Dráber P (2008) Regulation of microtubule nucleation from membranes by complexes of membrane-bound γ-tubulin with Fyn kinase and phosphoinositide 3-kinase. Biochem J 416:421–430

    Article  CAS  PubMed  Google Scholar 

  • Meunier S, Vernos I (2016) Acentrosomal microtubule assembly in mitosis: the where, when, and how. Trends Cell Biol 26:80–87

    Article  CAS  PubMed  Google Scholar 

  • Mishra RK, Chakraborty P, Arnaoutov A, Fontoura BM, Dasso M (2010) The Nup107-160 complex and γ-TuRC regulate microtubule polymerization at kinetochores. Nat Cell Biol 12:164–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mogensen MM, Malik A, Piel M, Bouckson-Castaing V, Bornens M (2000) Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: the role of ninein. J Cell Sci 113(Pt 17):3013–3023

    CAS  PubMed  Google Scholar 

  • Moreno-Mateos MA, Espina AG, Torres B, Gámez del Estal MM, Romero-Franco A, Ríos RM, Pintor-Toro JA (2011) PTTG1/securin modulates microtubule nucleation and cell migration. Mol Biol Cell 22:4302–4311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz M, Braunfeld MB, Guénebaut V, Heuser J, Agard DA (2000) Structure of the γ-tubulin ring complex: a template for microtubule nucleation. Nat Cell Biol 2:365–370

    Article  CAS  PubMed  Google Scholar 

  • Murata T, Sonobe S, Baskin TI, Hyodo S, Hasezawa S, Nagata T, Horio T, Hasebe M (2005) Microtubule-dependent microtubule nucleation based on recruitment of γ-tubulin in higher plants. Nat Cell Biol 7:961–968

    Article  CAS  PubMed  Google Scholar 

  • Muroyama A, Seldin L, Lechler T (2016) Divergent regulation of functionally distinct γ-tubulin complexes during differentiation. J Cell Biol 213:679–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogales E, Wang HW (2006) Structural intermediates in microtubule assembly and disassembly: how and why? Curr Opin Cell Biol 18:179–184

    Article  CAS  PubMed  Google Scholar 

  • Nováková M, Dráberová E, Schürmann W, Czihak G, Viklický V, Dráber P (1996) γ-tubulin redistribution in taxol-treated mitotic cells probed by monoclonal antibodies. Cell Motil Cytoskeleton 33:38–51

    Article  PubMed  Google Scholar 

  • Oakley CE, Oakley BR (1989) Identification of γ-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338:662–664

    Article  CAS  PubMed  Google Scholar 

  • Oakley BR, Paolillo V, Zheng Y (2015) γ-Tubulin complexes in microtubule nucleation and beyond. Mol Biol Cell 26:2957–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh SA, Jeon J, Park HJ, Grini PE, Twell D, Park SK (2016a) Analysis of gemini pollen 3 mutant suggests a broad function of AUGMIN in microtubule organization during sexual reproduction in Arabidopsis. Plant J 87:188–201

    Article  CAS  PubMed  Google Scholar 

  • Oh D, Yu CH, Needleman DJ (2016b) Spatial organization of the Ran pathway by microtubules in mitosis. Proc Natl Acad Sci U S A 113:8729–8734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oriolo AS, Wald FA, Canessa G, Salas PJ (2007) GCP6 binds to intermediate filaments: a novel function of keratins in the organization of microtubules in epithelial cells. Mol Biol Cell 18:781–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petry S, Vale RD (2015) Microtubule nucleation at the centrosome and beyond. Nat Cell Biol 17:1089–1093

    Article  CAS  PubMed  Google Scholar 

  • Petry S, Groen AC, Ishihara K, Mitchison TJ, Vale RD (2013) Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 152:768–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinyol R, Scrofani J, Vernos I (2013) The role of NEDD1 phosphorylation by aurora a in chromosomal microtubule nucleation and spindle function. Curr Biol 23:143–149

    Article  CAS  PubMed  Google Scholar 

  • Rivero S, Cardenas J, Bornens M, Rios RM (2009) Microtubule nucleation at the cis-side of the Golgi apparatus requires AKAP450 and GM130. EMBO J 28:1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roostalu J, Cade NI, Surrey T (2015) Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module. Nat Cell Biol 17:1422–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roubin R, Acquaviva C, Chevrier V, Sedjaï F, Zyss D, Birnbaum D, Rosnet O (2013) Myomegalin is necessary for the formation of centrosomal and Golgi-derived microtubules. Biol Open 2:238–250

    Article  CAS  PubMed  Google Scholar 

  • Samejima I, Miller VJ, Groocock LM, Sawin KE (2008) Two distinct regions of Mto1 are required for normal microtubule nucleation and efficient association with the γ-tubulin complex in vivo. J Cell Sci 121:3971–3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Huertas C, Lüders J (2015) The augmin connection in the geometry of microtubule networks. Curr Biol 25:R294–R299

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Huertas C, Freixo F, Viais R, Lacasa C, Soriano E, Lüders J (2016) Non-centrosomal nucleation mediated by augmin organizes microtubules in post-mitotic neurons and controls axonal microtubule polarity. Nat Commun 7:12187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanders AA, Kaverina I (2015) Nucleation and dynamics of Golgi-derived microtubules. Front Neurosci 9:431

    Article  PubMed  PubMed Central  Google Scholar 

  • Sawin KE, Tran PT (2006) Cytoplasmic microtubule organization in fission yeast. Yeast 23:1001–1014

    Article  CAS  PubMed  Google Scholar 

  • Scrofani J, Sardon T, Meunier S, Vernos I (2015) Microtubule nucleation in mitosis by a RanGTP-dependent protein complex. Curr Biol 25:131–140

    Article  CAS  PubMed  Google Scholar 

  • Seltzer V, Janski N, Canaday J, Herzog E, Erhardt M, Evrard JL, Schmit AC (2007) Arabidopsis GCP2 and GCP3 are part of a soluble γ-tubulin complex and have nuclear envelope targeting domains. Plant J 52:322–331

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Thomas GE, Gireesh KK, Manna TK (2014) TACC3 protein regulates microtubule nucleation by affecting γ-tubulin ring complexes. J Biol Chem 289:31719–31735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soues S, Adams IR (1998) SPC72: a spindle pole component required for spindle orientation in the yeast Saccharomyces cerevisiae. J Cell Sci 111:2809–2818

    CAS  PubMed  Google Scholar 

  • Sulimenko V, Sulimenko T, Poznanovic S, Nechiporuk-Zloy V, Böhm KJ, Macurek L, Unger E, Dráber P (2002) Association of brain γ-tubulins with αβ-tubulin dimers. Biochem J 365:889–895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sulimenko V, Dráberová E, Sulimenko T, Macurek L, Richterová V, Dráber P, Dráber P (2006) Regulation of microtubule formation in activated mast cells by complexes of γ-tubulin with Fyn and Syk kinases. J Immunol 176:7243–7253

    Article  CAS  PubMed  Google Scholar 

  • Sulimenko V, Hájková Z, Černohorská M, Sulimenko T, Sládková V, Dráberová L, Vinopal S, Dráberová E, Dráber P (2015) Microtubule nucleation in mouse bone marrow-derived mast cells is regulated by the concerted action of GIT1/βPIX proteins and calcium. J Immunol 194:4099–4111

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y (2002) Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol Biol Cell 13:3235–3245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixidó-Travesa N, Villén J, Lacasa C, Bertran MT, Archinti M, Gygi SP, Caelles C, Roig J, Lüders J (2010) The γ-TuRC revisited: a comparative analysis of interphase and mitotic human γ-TuRC redefines the set of core components and identifies the novel subunit GCP8. Mol Biol Cell 21:3963–3972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teixidó-Travesa N, Roig J, Lüders J (2012) The where, when and how of microtubule nucleation - one ring to rule them all. J Cell Sci 125:4445–4456

    Article  PubMed  CAS  Google Scholar 

  • Tsai MY, Zheng Y (2005) Aurora a kinase-coated beads function as microtubule-organizing centers and enhance RanGTP-induced spindle assembly. Curr Biol 15:2156–2163

    Article  CAS  PubMed  Google Scholar 

  • Uehara R, Nozawa RS, Tomioka A, Petry S, Vale RD, Obuse C, Goshima G (2009) The augmin complex plays a critical role in spindle microtubule generation for mitotic progression and cytokinesis in human cells. Proc Natl Acad Sci U S A 106:6998–7003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uehara R, Kamasaki T, Hiruma S, Poser I, Yoda K, Yajima J, Gerlich DW, Goshima G (2016) Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission. Mol Biol Cell 27:812–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usui T, Maekawa H, Pereira G, Schiebel E (2003) The XMAP215 homologue Stu2 at yeast spindle pole bodies regulates microtubule dynamics and anchorage. EMBO J 22:4779–4793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhey KJ, Gaertig J (2007) The tubulin code. Cell Cycle 6:2152–2160

    Article  CAS  PubMed  Google Scholar 

  • Vinopal S, Černohorská M, Sulimenko V, Sulimenko T, Vosecká V, Flemr M, Dráberová E, Dráber P (2012) γ-Tubulin 2 nucleates microtubules and is downregulated in mouse early embryogenesis. PLoS One 7:e29919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Wu T, Shi L, Zhang L, Zheng W, Qu JY, Niu R, Qi RZ (2010) Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J Biol Chem 285:22658–22665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wu D, Quintin S, Green RA, Cheerambathur DK, Ochoa SD, Desai A, Oegema K (2015) NOCA-1 functions with γ-tubulin and in parallel to Patronin to assemble non-centrosomal microtubule arrays in C. elegans. Elife 4:e08649

    PubMed  PubMed Central  Google Scholar 

  • Wieczorek M, Bechstedt S, Chaaban S, Brouhard GJ (2015) Microtubule-associated proteins control the kinetics of microtubule nucleation. Nat Cell Biol 17:907–916

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama H, Koch B, Walczak R, Ciray-Duygu F, González-Sánchez JC, Devos DP, Mattaj IW, Gruss OJ (2014) The nucleoporin MEL-28 promotes RanGTP-dependent γ-tubulin recruitment and microtubule nucleation in mitotic spindle formation. Nat Commun 5:3270

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Chen Q, Feng J, Hou J, Yang F, Liu J, Jiang Q, Zhang C (2009) Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the γ-TuRC to the centrosome. J Cell Sci 122:2240–2251

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Braun U, Leitges M (2016) PKD3 deficiency causes alterations in microtubule dynamics during the cell cycle. Cell Cycle 15:1844–1854

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman WC, Sillibourne J, Rosa J, Doxsey SJ (2004) Mitosis-specific anchoring of γ-tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol Biol Cell 15:3642–3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Eduarda Dráberová and Tetyana Sulimenko for help with figure preparation. This work was supported by the grant LD13015 for COST action (BM1007 Mast Cells and Basophils-Targets for Innovative Therapies) from the Ministry of Education Youth and Sport and by Institutional Research Support (RVO 68378050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Dráber.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Reimer Stick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sulimenko, V., Hájková, Z., Klebanovych, A. et al. Regulation of microtubule nucleation mediated by γ-tubulin complexes. Protoplasma 254, 1187–1199 (2017). https://doi.org/10.1007/s00709-016-1070-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1070-z

Keywords

Navigation