Skip to main content
Log in

GIP1 protein is a novel cofactor that regulates DNA-binding affinity of redox-regulated members of bZIP transcription factors involved in the early stages of Arabidopsis development

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

In response to environmental light signals, gene expression adjustments play an important role in regulation of photomorphogenesis. LHCB2.4 is among the genes responsive to light signals, and its expression is regulated by redox-regulated members of G-group bZIP transcription factors. The biochemical interrelations of GBF1-interacting protein 1 (GIP1) and the G-group bZIP transcription factors have been investigated. GIP1, previously shown to enhance DNA-binding activities of maize GBF1 and Arabidopsis GBF3, is a plant specific protein that reduces DNA-binding activity of AtbZIP16, AtbZIP68, and AtGBF1 under non-reducing conditions through direct physical interaction shown by the yeast two-hybrid and pull-down assays. Fluorescence microscopy studies using cyan fluorescent protein (CFP)-fusion protein indicate that GIP1 is exclusively localized in the nucleus. Under non- reducing conditions, GIP1 exhibits predominantly high molecular weight forms, whereas it predominates in low molecular weight monomers under reducing conditions. While reduced GIP1 induced formation of DNA-protein complexes of G-group bZIPs, oxidized GIP1 decreased the amount of those complexes and instead induced its chaperone function suggesting functional switching from redox to chaperone activity. Finally analysis of transgenic plants overexpressing GIP1 revealed that GIP1 is a negative co-regulator in red and blue light mediated hypocotyl elongation. By regulating the repression effect by bZIP16 and the activation effect by bZIP68 and GBF1 on LHCB2.4 expression, GIP1 functions to promote hypocotyl elongation during the early stages of Arabidopsis seedling development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BL:

Blue light

BN:

Blue native

bZIP:

Basic region leucine zipper

CLSM:

Confocal laser scanning microscopy

DTT:

Dithiothreitol

EMSA:

Electrophoretic mobility shift assay

GIP1:

GBF1 interacting protein 1

IOD:

Iodoacetamide

LBD18:

Lateral organ boundaries domain 18

NEM:

N-ethylmaleimide

NLS:

Nuclear localization signal

NPE:

Nuclear protein extracts

ONPG:

O-nitrophenyl β-d-galactopyranoside

RL:

Red light

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

TPE:

Total protein extraction

2D:

Two-dimensional

References

  • Ang LH, Deng XW (1994) Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between HY5 and COP1 loci. Plant Cell 6:613–628

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arrigo AP, Suhan JP, Welch WJ (1988) Dynamic changes in the structure and intracellular locale of the mammalian low-molecular-weight heat shock protein. Mol Cell Biol 8:5059–5071

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  CAS  PubMed  Google Scholar 

  • Chi Y, Yang Y, Zhou Y, Zhou J, Fan B, Yu JQ, Chen Z (2013) Protein-protein interactions in the regulation of WRKY transcription factors. Mol Plant 6(2):287–300

    Article  CAS  PubMed  Google Scholar 

  • Deppmann CD, Acharya A, Rishi V, Wobbes B, Smeekens S, Taparowsky EJ, Vinson C (2004) Dimerization specificity of all 67 B-ZIP motifs in Arabidopsis thaliana: a comparison to Homo sapiens B-ZIP motifs. Nucleic Acids Res 32:3435–3445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Despres C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D, Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15:2181–2191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dietz KJ (2003) Redox control, redox signaling, and redox homeostasis in plant cells. Int Rev Cytol 228:141–193

    Article  CAS  PubMed  Google Scholar 

  • Ehrnsperger M, Graber S, Gaestel M, Buchner J (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. EMBO J 16:221–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eubel H, Braun HP, Millar AH (2005) Blue-native PAGE in plants: a tool in analysis of protein-protein interactions. Plant Methods 1:11

    Article  PubMed Central  PubMed  Google Scholar 

  • Foster R, Izawa T, Chua NH (1994) Plant bZIP proteins gather at ACGT elements. FASEB J 8:192–200

    CAS  PubMed  Google Scholar 

  • Heine GF, Hernandez JM, Grotewold E (2004) Two cysteines in plant R2R3 MYB domains participate in REDOX-dependent DNA binding. J Biol Chem 279:37878–37885

    Article  CAS  PubMed  Google Scholar 

  • Holm M, Ma LG, Qu LJ, Deng XW (2002) Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Gene Dev 16:1247–1259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hsieh WP, Hsieh HL, Wu SH (2012) Arabidopsis bZIP16 transcription factor integrates light and hormones signaling pathways to regulate early seedling development. Plant Cell 24:3997–4011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izawa S, Maeda K, Sugiyama K, Mano J, Inoue Y, Kimura A (1999) Thioredoxin deficiency causes the constitutive activation of Yap1, an AP-1-like transcription factor in Saccharomyces cerevisiae. J Biol Chem 274:28459–28465

    Article  CAS  PubMed  Google Scholar 

  • Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7:106–111

    Article  CAS  PubMed  Google Scholar 

  • Jiao Y, Lao OS, Deng XW (2007) Light regulated transcriptional networks in higher plants. Nat Rev Genet 8:217–230

    Article  CAS  PubMed  Google Scholar 

  • Klein P, Seidel T, Stöcker B, Dietz KJ (2012) The membrane-tethered transcription factor ANAC089 serves as redox-dependent suppressor of stromal ascorbate peroxidase gene expression. Front Plant Sci 3:247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleine T, Kindgren P, Benedict C, Hendrickson L, Strand Å (2007) Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance. Plant Physiol 144:1391–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee GJ, Roseman AM, Saibil HR, Vierling E (1997) A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding component state. EMBO J 16:659–671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HW, Park JH, Park MY, Kim J (2014) GIP1 may act as a coactivator that enhances transcriptional activity of LBD18 in Arabidopsis. J Plant Physiol 171:14–18

    Article  CAS  PubMed  Google Scholar 

  • Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants: functional domains, evolution and regulation. Eur J Biochem 262:247–257

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Colavitti R, Rovira II, Finkel T (2005) Redox-dependent transcriptional regulation. Circ Res 97:967–974

    Article  CAS  PubMed  Google Scholar 

  • Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mallappa C, Yadav V, Negi P, Chattopadhyay S (2006) A basic leucine zipper transcription factor, G-box-binding factor 1, regulates blue light-mediated photomorphogenic growth in Arabidopsis. J Biol Chem 281:22190–22199

    Article  CAS  PubMed  Google Scholar 

  • Mallappa C, Singh A, Ram H, Chattopadhyay S (2008) GBF1, a transcription factor of blue light signaling in Arabidopsis is degraded in the dark by a proteasome mediated pathway independent of COP1 and SPA1. J Biol Chem 283:35772–35782

    Article  CAS  PubMed  Google Scholar 

  • Matthews JR, Wakasugi N, Virelizier JL, Yodoi J, Hay RT (1992) Thioredoxin regulates the DNA binding activity of NF-kappa B by reduction of a disulphide bond involving cysteine 62. Nucleic Acids Res 20:3821–3830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyer-Siegler K, Mauro DJ, Seal G, Wurzer J, Dierel JK, Sirover MA (1991) A human nuclear uracil DNA glycosylase is the 37-kDa subunit of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A 88:8460–8464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Naar AM, Lemon BD, Tjian R (2001) Transcriptional coactivator complexes. Annu Rev Biochem 70:475–501

    Article  CAS  PubMed  Google Scholar 

  • Nagatani A, Reed JW, Chory J (1993) Isolation and initial characterization of Arabidopsis mutants that Are deficient in phytochrome A. Plant Physiol 102:269–277

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neff MM, Fanhauser C, Chory J (2000) Light: an indicator of time and place. Gen Dev 14:257–271

    CAS  Google Scholar 

  • Pepper AE, Chory J (1997) Extragenic suppressors of the Arabidopsis det1 mutant identify elements of flowering time and light response regulatory pathways. Genetics 145:1125–1137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ron D, Habener JF (1992) CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant negative inhibitor of gene transcription. Gene Dev 6:439–453

    Article  CAS  PubMed  Google Scholar 

  • Schindler U, Menkens AE, Beckmann H, Ecker JR, Cashmore AR (1992) Heterodimerization between light-regulated and ubiquitously expressed Arabidopsis GBF bZIP proteins. EMBO J 11:1261–1273

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sehnke PC, Laughner BJ, Linebarger CL, Gurley WB, Ferl RJ (2005) Identification characterization of GIP1, an Arabidopsis thaliana protein that enhances the DNA binding affinity and reduces the oligomeric state of G-box binding factors. Cell Res 15:567–575

    Article  CAS  PubMed  Google Scholar 

  • Shaikhali J, Heiber I, Seidel T, Stroher E, Hiltscher H, Birkmann S, Dietz KJ, Baier M (2008) The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes. BMC Plant Biol 8:48

    Article  PubMed Central  PubMed  Google Scholar 

  • Shaikhali J, Noren L, Barajas-Lopéz JD, Srivastava V, König J, Sauer UH, Wingsle G, Dietz KJ, Strand A (2012) Redox-mediated mechanisms regulate DNA-binding activity of the G-group of bZIP transcription factors in Arabidopsis. J Biol Chem 287:27510–27525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen H, Cao K, Wang X (2008) AtbZIP16 and AtbZIP68, two new members of GBFs, can interact with other G group bZIPs in Arabidopsis thaliana. BMB Rep 41:132–138

    Article  CAS  PubMed  Google Scholar 

  • Siberil Y, Doireau P, Gantet P (2001) Plant G-box binding factors: modular structure and activation mechanisms. Eur J Biochem 268:5655–5666

    Article  CAS  PubMed  Google Scholar 

  • Stroher E, Wang XJ, Roloff N, Klein P, Husemann A, Dietz KJ (2009) Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in Arabidopsis thaliana. Mol Plant 2:357–367

    Article  PubMed  Google Scholar 

  • Su PH, Li HM (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2009) Plant immunity requires conformational changes of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    Article  Google Scholar 

  • Tamai H, Iwabuchi M, Meshi T (2002) Arabidopsis GARP transcriptional activators interact with the Pro-rich activation domain shared by G-box-binding bZIP factors. Plant Cell Physiol 43:99–107

    Article  CAS  PubMed  Google Scholar 

  • Tandon S, Horowitz PM (1989) Reversible folding of rhodanese. Presence of intermediate(s) at equilibrium. J Biol Chem 264:9859–9866

    CAS  PubMed  Google Scholar 

  • Torn AE, Bertoncini CW, Chan RL, Gonzales DH (2002) Redox regulation of plant homeodomain transcription factors. J Biol Chem 277:34800–34807

    Article  Google Scholar 

  • Vincentz M, Bandeira-Kobarg C, Gauer L, Schlögl P, Leite A (2003) Evolutionary pattern of angiosperm bZIP factors homologous to the maize Opaque2 regulatory protein. J Mol Evol 56:105–116

    Article  CAS  PubMed  Google Scholar 

  • Virbasius CM, Wagner S, Green MR (1999) A human nuclear-localized chaperone that regulates dimerization, DNA binding and transcriptional activity of bZIP proteins. Mol Cell 4:219–228

    Article  CAS  PubMed  Google Scholar 

  • Von Arnim A, Deng XW (1996) Light control of seedling development. Annu Rev Plant Physiol Plant Mol Biol 47:215–243

    Article  Google Scholar 

  • Wei SJ, Botero A, Hirota K, Bradbury CM, Markovina S, Laszlo A, Spitz DR, Goswami PC, Yodoi J, Gius D (2000) Thioredoxin nuclear translocation and interaction with redox factor-1 activates the activator protein-1 transcription factor in response to ionizing radiation. Cancer Res 60:6688–6695

    CAS  PubMed  Google Scholar 

  • Whitelam GC, Johnson E, Peng J, Carol P, Anderson ML, Cowl JS, Harberd NP (1993) Phytochrome A null mutants of Arabidopsis display a wild-type phenotype in white light. Plant Cell 5:757–768

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Zheng M, Aslund F, Storz G (1998) Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279:1718–1721

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank Prof. Gunnar Wingsle and Dr. Juande Dios Barajas-Lopez for their critical reading of the manuscript. I thank Dr. Robert J. Ferl for the gift of anti-GIP1 antibody. Dr. Jungmook Kim is gratefully acknowledged for providing seeds of 35S:GIP1 transgenic lines. This work was supported by a grant from the KEMPE foundation.

Conflict of interest

The author declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jehad Shaikhali.

Additional information

Handling Editor: Peter Nick

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Homology of ZmGBF1, AtGBF3 and AtGBF1 proteins. A, Amino acid sequence alignment of ZmGBF1, AtGBF3 and AtGBF1 proteins. The asterisks (*) indicates perfectly conserved amino acid residues, (:) indicates general similarities, similarity among 2 to 4 is represented by (.) and dashes (−) indicate gaps introduced to maximize alignment. B, The phylogenetic tree was produced using Phylogeny.fr (http://www.phylogeny.fr/). (PDF 149 kb)

Figure S2

Gene expression of GIP1, bZIP16, bZIP68 and GBF1 genes during development and photomorphogenesis. A, Transcript abundance in the different stages of Arabidopsis development using the developmental tool of Genevestigator (www.genevestigator.com). B, Heat map representing the co-expression patterns of GIP1, bZIP16, bZIP68 and GBF1 genes (in row) during photomorphogenesis such as seed germination after 12 and 24 h and in response to red and blue light (in column). (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikhali, J. GIP1 protein is a novel cofactor that regulates DNA-binding affinity of redox-regulated members of bZIP transcription factors involved in the early stages of Arabidopsis development. Protoplasma 252, 867–883 (2015). https://doi.org/10.1007/s00709-014-0726-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0726-9

Keywords

Navigation