Skip to main content
Log in

Single-molecule detection and tracking in plants

  • Special Issue: New/Emerging Techniques in Biological Microscopy
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Combining optical properties with a limited choice of fluorophores turns single-molecule imaging in plants into a challenging task. This explains why the technique, despite its success in the field of animal cell biology, is far from being routinely applied in plant cell research. The same challenges, however, also apply to the application of single-molecule microscopy to any intact tissue or multicellular 3D cell culture. As recent and upcoming progress in fluorescence microscopy will permit single-molecule detection in the context of multicellular systems, plant tissue imaging will experience a huge benefit from this progress. In this review, we address every step of a single-molecule experiment, highlight the critical aspects of each and elaborate on optimizations and developments required for improvements. We relate each step to recent achievements, which have so far been conducted exclusively on the root epidermis of Arabidopsis thaliana seedlings with inclined illumination and show examples of single-molecule measurements using different cells or illumination schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PM:

Plasma membrane

PSF:

Point spread function

SNR:

Signal-to-noise ratio

References

  • Abraham AV, Ram S, Chao J et al (2009) Quantitative study of single molecule location estimation techniques. Opt Express 17:23352–23373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alcor D, Gouzer G, Triller A (2009) Single-particle tracking methods for the study of membrane receptors dynamics. Eur J Neurosci 30:987–997. doi:10.1111/j.1460-9568.2009.06927.x

    PubMed  Google Scholar 

  • Arimura S, Yamamoto J, Aida GP et al (2004) Frequent fusion and fission of plant mitochondria with unequal nucleoid distribution. Proc Natl Acad Sci U S A 101:7805–7808. doi:10.1073/pnas.0401077101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence. Ann Rev Biophys Bioeng 247–268

  • Beck M, Zhou J, Faulkner C et al (2012) Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell 24:4205–4219. doi:10.1105/tpc.112.100263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bender J, Benfey P, Bergmann D et al (2008) 2020 vision for biology: the role of plants in addressing grand challenges in biology. Mol Plant 1:561–563. doi:10.1093/mp/ssn040

    CAS  PubMed  Google Scholar 

  • Betzig E, Patterson GH, Sougrat R et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645. doi:10.1126/science.1127344

    CAS  PubMed  Google Scholar 

  • Bolte S, Talbot C, Boutte Y et al (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    CAS  PubMed  Google Scholar 

  • Brown SC, Bolte S, Gaudin M et al (2010) Exploring plant endomembrane dynamics using the photoconvertible protein Kaede. Plant J 63:696–711. doi:10.1111/j.1365-313X.2010.04272.x

    CAS  PubMed  Google Scholar 

  • Cheezum MK, Walker WF, Guilford WH (2001) Quantitative comparison of algorithms for tracking single fluorescent particles. Biophys J 81:2378–2388. doi:10.1016/S0006-3495(01)75884-5

    CAS  PubMed Central  PubMed  Google Scholar 

  • Durisic N, Godin AG, Wever CM et al (2012) Stoichiometry of the human glycine receptor revealed by direct subunit counting. J Neurosci 32:12915–12920

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan L, Hao H, Xue Y et al (2013) Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 140:3826–3837. doi:10.1242/dev.095711

    CAS  PubMed  Google Scholar 

  • Friml J, Benková E, Mayer U et al (2003) Automated whole mount localisation techniques for plant seedlings. Plant J 34:115–124

    CAS  PubMed  Google Scholar 

  • Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15:128–136. doi:10.1016/j.chembiol.2008.01.007

    CAS  PubMed  Google Scholar 

  • Haga T, Takahashi S, Sonehara T et al (2011) Dual-view imaging system using a wide-range dichroic mirror for simultaneous four-color single-molecule detection. Anal Chem 83:6948–6955

    CAS  PubMed  Google Scholar 

  • Hanson MR, Köhler RH (2001) GFP imaging: methodology and application to investigate cellular compartmentation in plants. J Exp Bot 52:529–539

    CAS  PubMed  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A 94:2122–2127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hink M (2002) Fluorescence fluctuation spectroscopy applied to living plant cells

  • Hink M a, Shah K, Russinova E et al (2008) Fluorescence fluctuation analysis of Arabidopsis thaliana somatic embryogenesis receptor-like kinase and brassinosteroid insensitive 1 receptor oligomerization. Biophys J 94:1052–1062. doi:10.1529/biophysj.107.112003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang Q, Huang Z, Meng G et al (2013) Plasmonic nanorod arrays for enhancement of single-molecule detection. Chem Commun (Camb) 49:11743–11745

    CAS  Google Scholar 

  • Huisken J, Swoger J, Del Bene F et al (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–1009. doi:10.1126/science.1100035

    CAS  PubMed  Google Scholar 

  • Isacoff EYUM (2007) Subunit counting in membrane-bound proteins. Bioscience 4:319–321. doi:10.1038/NMETH1024.Subunit

    Google Scholar 

  • Jaqaman K, Loerke D, Mettlen M (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat 5:695–702. doi:10.1038/NMETH.1237

    CAS  Google Scholar 

  • Johnsson N, Johnsson K (2007) Review 2:31–38

    CAS  Google Scholar 

  • Jorand R, Le Corre G, Andilla J et al (2012) Deep and clear optical imaging of thick inhomogeneous samples. PLoS One 7:e35795. doi:10.1371/journal.pone.0035795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kiemer L, Cesareni G (2007) Comparative interactomics: comparing apples and pears? Trends Biotechnol 25:448–454

    CAS  PubMed  Google Scholar 

  • Kleine-Vehn J, Wabnik K, Martinière A et al (2011) Recycling, clustering, and endocytosis jointly maintain PIN auxin carrier polarity at the plasma membrane. Mol Syst Biol 7:540. doi:10.1038/msb.2011.72

    PubMed Central  PubMed  Google Scholar 

  • Konopka C a, Bednarek SY (2008) Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J 53:186–196. doi:10.1111/j.1365-313X.2007.03306.x

    CAS  PubMed  Google Scholar 

  • Kwaaitaal M, Schor M, Hink MA et al (2011) Fluorescence correlation spectroscopy and fluorescence recovery after photobleaching to study receptor kinase mobility in planta. Methods Mol Biol 779:225–242. doi:10.1007/978-1-61779-264-9

    CAS  PubMed  Google Scholar 

  • Lang C, Schulze J, Mendel R-R, Hänsch R (2006) HaloTag: a new versatile reporter gene system in plant cells. J Exp Bot 57:2985–2992. doi:10.1093/jxb/erl065

    CAS  PubMed  Google Scholar 

  • Langhans M, Ratajczak R, Lützelschwab M et al (2001) Immunolocalization of plasma-membrane H+-ATPase and tonoplast-type pyrophosphatase in the plasma membrane of the sieve element-companion cell complex in the stem of Ricinus communis L. Planta 213:11–19

    CAS  PubMed  Google Scholar 

  • Larkin J, Cook P (2012) Maximum precision closed-form solution for localizing diffraction-limited spots in noisy images. Opt Express 20:18478–18493

    PubMed Central  PubMed  Google Scholar 

  • Lee J, Miyanaga Y, Ueda M, Hohng S (2012) Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging. Biophys J 103:1691–1697. doi:10.1016/j.bpj.2012.09.014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li X, Wang X, Yang Y, et al. (2011) Single-molecule analysis of PIP2;1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell 1–19. doi: 10.1105/tpc.111.091454

  • Löfblom J, Feldwisch J, Tolmachev V et al (2010) Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584:2670–2680. doi:10.1016/j.febslet.2010.04.014

    PubMed  Google Scholar 

  • Lommerse PHM, Blab G a, Cognet L et al (2004) Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys J 86:609–616. doi:10.1016/S0006-3495(04)74139-9

    CAS  PubMed Central  PubMed  Google Scholar 

  • Los GV, Darzins A, Zimprich C et al (2005) HaloTagTM interchangeable labeling technology for cell imaging, protein capture and immobilization. Promega Notes 89:2–6

    Google Scholar 

  • Maizel A, von Wangenheim D, Federici F et al (2011) High-resolution live imaging of plant growth in near physiological bright conditions using light sheet fluorescence microscopy. Plant J 68:377–385

    CAS  PubMed  Google Scholar 

  • Mann DGJ, Abercrombie LL, Rudis MR et al (2012) Very bright orange fluorescent plants: endoplasmic reticulum targeting of orange fluorescent proteins as visual reporters in transgenic plants. BMC Biotechnol 12:17. doi:10.1186/1472-6750-12-17

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mappes T, Jahr N, Csaki A et al (2012) The invention of immersion ultramicroscopy in 1912—the birth of nanotechnology? Angew Chem Int Ed Engl 51:11208–11212. doi:10.1002/anie.201204688

    CAS  PubMed  Google Scholar 

  • Martinière A, Lavagi I, Nageswaran G et al (2012) Cell wall constrains lateral diffusion of plant plasma-membrane proteins. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1202040109

    PubMed Central  PubMed  Google Scholar 

  • Mathur J, Radhamony R, Sinclair AM et al (2010) mEosFP-based green-to-red photoconvertible subcellular probes for plants. Plant Physiol 154:1573–1587. doi:10.1104/pp. 110.165431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meckel T, Hurst AC, Thiel G, Homann U (2004) Endocytosis against high turgor: intact guard cells of Vicia faba constitutively endocytose fluorescently labelled plasma membrane and GFP-tagged K+-channel KAT1

  • Meckel T, Semrau S, Schaaf MJM, Schmidt T (2011) Robust assessment of protein complex formation in vivo via single-molecule intensity distributions of autofluorescent proteins. J Biomed Opt 16:076016. doi:10.1117/1.3600002

    PubMed  Google Scholar 

  • Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504:183–200. doi:10.1016/B978-0-12-391857-4.00009-4

    PubMed  Google Scholar 

  • Merzlyak EM, Goedhart J, Shcherbo D et al (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4:555–557. doi:10.1038/nmeth1062

    CAS  PubMed  Google Scholar 

  • Millwood RJ, Halfhill MD, Harkins D et al (2003) Instrumentation and methodology for quantifying GFP fluorescence in intact plant organs. Biotechniques 34:638–643

    CAS  PubMed  Google Scholar 

  • Monici M (2005) Cell and tissue autofluorescence research and diagnostic applications. Biotechnol Annu Rev 11:227–256

    CAS  PubMed  Google Scholar 

  • Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat Methods 7:377–381

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mutch S a, Fujimoto BS, Kuyper CL et al (2007) Deconvolving single-molecule intensity distributions for quantitative microscopy measurements. Biophys J 92:2926–2943. doi:10.1529/biophysj.106.101428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muyldermans S (2013) Nanobodies: natural single-domain antibodies. Annu Rev Biochem 82:775–797. doi:10.1146/annurev-biochem-063011-092449

    CAS  PubMed  Google Scholar 

  • Napier RM, Fowke LC, Hawes C et al (1992) Immunological evidence that plants use both HDEL and KDEL for targeting proteins to the endoplasmic reticulum. J Cell Sci 102:261–271, Pt 2

    CAS  PubMed  Google Scholar 

  • Nie S, Chiu DT, Zare RN (1994) Probing individual molecules with confocal fluorescence microscopy. Science 266:1018–1021

    CAS  PubMed  Google Scholar 

  • Nienhaus K, Nienhaus UG (2013) Fluorescent proteins for live-cell imaging with super-resolution. Chem Soc Rev 20–24. doi: 10.1039/c3cs60171d

  • Nishimura H, Ritchie K, Kasai RS et al (2013) Biocompatible fluorescent silicon nanocrystals for single-molecule tracking and fluorescence imaging. J Cell Biol 202:967–983. doi:10.1083/jcb.201301053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ober RJ, Ram S, Ward ES (2004) Localization accuracy in single-molecule microscopy. Biophys J 86:1185–1200. doi:10.1016/S0006-3495(04)74193-4

    CAS  PubMed Central  PubMed  Google Scholar 

  • Orrit M, Bernard J (1990) Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys Rev Lett 65:2716–2719

    CAS  PubMed  Google Scholar 

  • Orrit M, Bernard J, Personov RI (1993) High-resolution spectroscopy of organic molecules in solids: from fluorescence line narrowing and hole burning to single molecule spectroscopy. J Phys Chem 97:10256–10268. doi:10.1021/j100142a003

    CAS  Google Scholar 

  • Pinaud F, Clarke S, Sittner A, Dahan M (2010) Probing cellular events, one quantum dot at a time. Nat Methods 7:275–285. doi:10.1038/nmeth.1444

    CAS  PubMed  Google Scholar 

  • Planchon TA, Gao L, Milkie DE et al (2011) Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods. doi:10.1038/NMETH.1586

    PubMed Central  PubMed  Google Scholar 

  • Quan T, Zhu H, Liu X et al (2011) High-density localization of active molecules using Structured Sparse Model and Bayesian Information Criterion. Opt Express 19:16963–16974

    CAS  PubMed  Google Scholar 

  • Ravindran S, Kim S, Martin R et al (2005) Quantum dots as bio-labels for the localization of a small plant adhesion protein. Nanotechnology 16:1–4

    CAS  Google Scholar 

  • Reiner A, Arant R, Isacoff EY (2012) Assembly stoichiometry of the GluK2/GluK5 kainate receptor complex. Cell Rep 1:234–240. doi:10.1016/j.celrep.2012.01.003.Assembly

    CAS  PubMed Central  PubMed  Google Scholar 

  • Renz M, Daniels BR, Vámosi G et al (2012) Plasticity of the asialoglycoprotein receptor deciphered by ensemble FRET imaging and single-molecule counting PALM imaging. Proc Natl Acad Sci U S A 109:E2989–E2997. doi:10.1073/pnas.1211753109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ritter JG, Veith R, Siebrasse J-P, Kubitscheck U (2008) High-contrast single-particle tracking by selective focal plane illumination microscopy. Opt Express 16:7142–7152

    PubMed  Google Scholar 

  • Ritter JG, Veith R, Veenendaal A et al (2010) Light sheet microscopy for single molecule tracking in living tissue. PLoS One 5:e11639. doi:10.1371/journal.pone.0011639

    PubMed Central  PubMed  Google Scholar 

  • Rivière D, Leroy C, Guyon E, Hulin JP (1987) An optical study of thin interfacial liquid films using total reflection of light. Exp Fluids 5:349–354

    Google Scholar 

  • Rolfe DJ, McLachlan CI, Hirsch M et al (2011) Automated multidimensional single molecule fluorescence microscopy feature detection and tracking. Eur Biophys J 40:1167–1186. doi:10.1007/s00249-011-0747-7

    PubMed  Google Scholar 

  • Rouwendal GJ, Mendes O, Wolbert EJ, Douwe de Boer A (1997) Enhanced expression in tobacco of the gene encoding green fluorescent protein by modification of its codon usage. Plant Mol Biol 33:989–999

    CAS  PubMed  Google Scholar 

  • Runions J, Brach T, Kühner S, Hawes C (2006) Photoactivation of GFP reveals protein dynamics within the endoplasmic reticulum membrane. J Exp Bot 57:43–50. doi:10.1093/jxb/eri289

    CAS  PubMed  Google Scholar 

  • Sakaue-Sawano A, Kurokawa H, Morimura T et al (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132:487–498. doi:10.1016/j.cell.2007.12.033

    CAS  PubMed  Google Scholar 

  • Sako Y, Minoghchi S, Yanagida T (2000) Single-molecule imaging of EGFR signalling on the surface of living cells. Nat Cell Biol 2:168–172

    CAS  PubMed  Google Scholar 

  • Satiat-Jeunemaitre B, Boevink P, Hawes C (1999) Membrane trafficking in higher plant cells: GFP and antibodies, partners for probing the secretory pathway. Biochimie 81:597–605

    CAS  PubMed  Google Scholar 

  • Sauer M, Friml J (2010) Immunolocalization of proteins in plants. Methods Mol Biol 655:253–263

    CAS  PubMed  Google Scholar 

  • Savage RS, Oliver S (2007) Bayesian methods of astronomical source extraction. Astrophys J 661:1339–1346. doi:10.1086/515393

    Google Scholar 

  • Schaaf MJM, Koopmans WJ a, Meckel T et al (2009) Single-molecule microscopy reveals membrane microdomain organization of cells in a living vertebrate. Biophys J 97:1206–1214. doi:10.1016/j.bpj.2009.05.044

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schenkel M, Sinclair AM, Johnstone D et al (2008) Visualizing the actin cytoskeleton in living plant cells using a photo-convertible mEos::FABD-mTn fluorescent fusion protein. Plant Methods 4:21. doi:10.1186/1746-4811-4-21

    PubMed Central  PubMed  Google Scholar 

  • Schiller M, Massalski C, Kurth T, Steinebrunner I (2012) The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space. BMC Plant Biol 12:123. doi:10.1186/1471-2229-12-123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. doi:10.1038/nmeth.2019

    CAS  PubMed  Google Scholar 

  • Schnell U, Dijk F, Sjollema K, Giepmans B (2012) Immunolabeling artifacts and the need for live-cell imaging. Nat Methods. doi:10.1038/NMETH.1855

    PubMed  Google Scholar 

  • Schoen I, Ries J, Klotzsch E et al (2011) Binding-activated localization microscopy of DNA structures. Nano Lett 11:4008–4011. doi:10.1021/nl2025954

    CAS  PubMed  Google Scholar 

  • Schütz GJ, Schindler H, Schmidt T (1997) Single-molecule microscopy on model membranes reveals anomalous diffusion. Biophys J 73:1073–1080. doi:10.1016/S0006-3495(97)78139-6

    PubMed Central  PubMed  Google Scholar 

  • Semrau S, Schmidt T (2007) Particle image correlation spectroscopy (PICS): retrieving nanometer-scale correlations from high-density single-molecule position data. Biophys J 92:613–621. doi:10.1529/biophysj.106.092577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA et al (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22:1567–1572. doi:10.1038/nbt1037

    CAS  PubMed  Google Scholar 

  • Shaner NC, Lin MZ, Mckeown MR et al (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5:545–551. doi:10.1038/NMETH.1209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A 103:18911–18916. doi:10.1073/pnas.0609643104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw SL, Ehrhardt DW (2013) Smaller, faster, brighter: advances in optical imaging of living plant cells. Annu Rev Plant Biol. doi:10.1146/annurev-arplant-042110-103843

    PubMed  Google Scholar 

  • Shcherbo D, Murphy CS, Ermakova GV et al (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574. doi:10.1042/BJ20081949

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shemiakina II, Ermakova GV, Cranfill PJ et al (2012) A monomeric red fluorescent protein with low cytotoxicity. Nat Commun 3:1204

    CAS  PubMed  Google Scholar 

  • Siebrasse JP, Kaminski T, Kubitscheck U (2012) Nuclear export of single native mRNA molecules observed by light sheet fluorescence microscopy. Proc Natl Acad Sci U S A 109:9426–9431. doi:10.1073/pnas.1201781109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Siedentopf H, Zsigmondy R (1902) Uber Sichtbarmachung und Größenbestimmung ultramikoskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Ann Phys 315:1–39

    Google Scholar 

  • Sparkes I, Brandizzi F (2012) Fluorescent protein-based technologies: shedding new light on the plant endomembrane system. Plant J 70:96–107

    CAS  PubMed  Google Scholar 

  • Stewart CN (2006) Go with the glow: fluorescent proteins to light transgenic organisms. Trends Biotechnol 24:155–162. doi:10.1016/j.tibtech.2006.02.002

    CAS  PubMed  Google Scholar 

  • Tokunaga M, Imamoto N, Sakata-sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5:159–161. doi:10.1038/NMETH.1171

    CAS  PubMed  Google Scholar 

  • Tsutsui H, Karasawa S, Okamura Y, Miyawaki A (2008) Improving membrane voltage measurements using FRET with new fluorescent proteins. Nat Methods 5:683–685. doi:10.1038/NMETH.1235

    CAS  PubMed  Google Scholar 

  • Urh M, Rosenberg M (2012) HaloTag, a platform technology for protein analysis. Curr Chem Genom 6:72–78. doi:10.2174/1875397301206010072

    CAS  Google Scholar 

  • Vizcay-Barrena G, Webb SED, Martin-Fernandez ML, Wilson Za (2011) Subcellular and single-molecule imaging of plant fluorescent proteins using total internal reflection fluorescence microscopy (TIRFM). J Exp Bot 1–10. doi: 10.1093/jxb/err212

  • Vogelmann T (1993) Plant tissue optics. Annu Rev Plant Physiol Plant Mol Biol 44:231–251. doi:10.1146/annurev.arplant.44.1.231

    Google Scholar 

  • VOIE AH, BURNS DH, SPELMAN FA (1993) Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc 170:229–236

    CAS  PubMed  Google Scholar 

  • Wan Y, Ash WM, Fan L et al (2011) Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana. Plant Methods 7:27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, Quan T, Zeng S, Huang Z (2012) PALMER: a method capable of parallel localization of multiple emitters for high-density localization microscopy. 20:16039–16049. doi: 10.1038/nmeth.1978.S

  • Wang Q, Zhao Y, Luo W et al (2013) Single-particle analysis reveals shutoff control of the Arabidopsis ammonium transporter AMT1;3 by clustering and internalization. Proc Natl Acad Sci U S A 110:13204–13209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe W, Shimada T, Matsunaga S et al (2007) Single-organelle tracking by two-photon conversion. Opt Express 15:2490. doi:10.1364/OE.15.002490

    PubMed  Google Scholar 

  • Weil T, Vosch T, Hofkens J et al (2010) The rylene colorant family—tailored nanoemitters for photonics research and applications. Angew Chem Int Ed Engl 49:9068–9093. doi:10.1002/anie.200902532

    CAS  PubMed  Google Scholar 

  • Wieser S, Schütz GJ (2008) Tracking single molecules in the live cell plasma membrane—Do’s and Don’t’s. Methods 46:131–140. doi:10.1016/j.ymeth.2008.06.010

    CAS  PubMed  Google Scholar 

  • Wöll D, Kölbl C, Stempfle B, Karrenbauer A (2013) A novel method for automatic single molecule tracking of blinking molecules at low intensities. Phys Chem Chem Phys 15:6196–6205. doi:10.1039/c3cp44693j

    PubMed  Google Scholar 

  • Woolley JT (1975) Refractive index of soybean leaf cell walls. Plant Physiol 55:172–174

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Meckel T, Brzostowski J a et al (2010) Coupling mechanism of a GPCR and a heterotrimeric G protein during chemoattractant gradient sensing in Dictyostelium. Sci Signal 3:ra71. doi:10.1126/scisignal.2000980

    PubMed  Google Scholar 

  • Yoon JW, Bruckbauer A, Fitzgerald WJ, Klenerman D (2008) Bayesian inference for improved single molecule fluorescence tracking. Biophys J 94:4932–4947. doi:10.1529/biophysj.107.116285

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshida K, Ohnishi M, Fukao Y et al (2013) Studies on vacuolar membrane microdomains isolated from Arabidopsis suspension-cultured cells: local distribution of vacuolar membrane proteins. Plant Cell Physiol 54:1571–1584. doi:10.1093/pcp/pct107

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Ulrich Kubitscheck and Jan-Hendrick Spille for providing their SPIM setup for studies on Arabidopsis root hairs. This work is funded by a DFG grant to T.M. (ME 3712/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Meckel.

Additional information

Handling Editor: J. W. Borst

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langhans, M., Meckel, T. Single-molecule detection and tracking in plants. Protoplasma 251, 277–291 (2014). https://doi.org/10.1007/s00709-013-0601-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0601-0

Keywords

Navigation