Skip to main content
Log in

Silicon in Imperata cylindrica (L.) P. Beauv: content, distribution, and ultrastructure

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Silicon concentration, distribution, and ultrastructure of silicon deposits in the Poaceae Imperata cylindrica (L.) P. Beauv. have been studied. This grass, known for its medicinal uses and also for Fe hyperaccumulation and biomineralization capacities, showed a concentration of silicon of 13,705 ± 9,607 mg/kg dry weight. Silicon was found as an important constituent of cell walls of the epidermis of the whole plant. Silica deposits were found in silica bodies, endodermis, and different cells with silicon-collapsed lumen as bulliforms, cortical, and sclerenchyma cells. Transmission electron microscope observations of these deposits revealed an amorphous material of an ultrastructure similar to that previously reported in silica bodies of other Poaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alassimone J, Roppolo D, Geldner N, Vermeer JEM (2012) The endodermis—development and differentiation of the plant’s inner skin. Protoplasma 249:433–435

    Article  PubMed  Google Scholar 

  • Amils R, Rodriguez N, de la Fuente V (2007) Composition, speciation and distribution of iron minerals in Imperata cylindrica. Plant Physiol Biochem 20:1–6

    Google Scholar 

  • Bauer P, Elbaum R, Weiss IM (2011) Calcium and silicon mineralization in land plants: transport, structure and function. Plant Sci 180:746–756

    Article  CAS  PubMed  Google Scholar 

  • Bilbro JD, Undersander DJ, Fryrear DW, Lester CM (1991) A survey of lignin, cellulose, and acid detergent fiber ash contents of several plants and implications for wind erosion control. J Soil Water Conserv 46:314–316

    Google Scholar 

  • Borissow G (1924) Über die eigenartigen Kieselkörper in der Wurzelendodermis bei Andropogon-Arten. Ber Dtsch Botanischen Ges 42:366–380

    Google Scholar 

  • Borissow G (1925) Rasdorskys Körpchen bei Ravenna-Gras. Ber Dtsch Botanischen Ges 43:178–184

    Google Scholar 

  • Borissow G (1928) Weiteres über die Rasdorskyschen Körpchen. Ber Dtsch Botanischen Ges 46:463–480

    Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera Graminum. Her Majesty’s Stationary Office, London, 389 p

    Google Scholar 

  • Cooked J, Leishman R (2011) Is plant ecology more siliceous than we realize? Trends Plant Sci 16(2):61–68

    Article  Google Scholar 

  • Cornelissen JHC, Thompson K (1997) Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol 135:109–114

    Article  Google Scholar 

  • Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot Lond 100(7):1383–1389

    Article  CAS  Google Scholar 

  • Ellis JR, Watson DMH, Varvel GE, Jawson MD (1995) Methyl-bromide soil fumigation alters plant–element concentrations. Soil Sci Soc Am J 59:848–852

    Article  CAS  Google Scholar 

  • Enstone DE, Peterson CA, Ma F (2003) Root endodermis and exodermis; structure, functions, and responses to the environment. J Plant Growth Regul 21(4):335–351

    Article  Google Scholar 

  • Esau K (1965) Plant anatomy, 2nd edn. Wiley, New York

    Google Scholar 

  • Fu F, Akagi T, Yabuki S, Iwaki M (2001) The variation of REE (rare earth elements) patterns in soil-grown plants: a new proxy for the source of rare earth elements and silicon in plants. Plant Soil 235:53–64

    Article  CAS  Google Scholar 

  • Harrison CC (1996) Evidence for intramolecular macromolecules containing protein from plant silicas. Phytochemistry 41:37–42

    Article  CAS  PubMed  Google Scholar 

  • Hodson MJ, Sangster AG (1989a) Subcellular localization of mineral deposits in the roots of wheat (Triticum aestivum L.). Protoplasma 151:19–32

    Article  Google Scholar 

  • Hodson MJ, Sangster AG (1989b) X-ray microanalysis of the seminal root of Sorghum bicolor (L.) Moench. with particular reference to silicon. Ann Bot Lond 64:659–667

    Google Scholar 

  • Hodson MJ, White PJ, Mead A, Broadley MR (2005) Phylogenetic variation in the silicon composition of plants. Ann Bot Lond 96:1027–1046

    Article  CAS  Google Scholar 

  • Kone WM, Koffi AG, Bomisso EL, Tra Bi FH (2012) Ethnomedical study and iron content of some medicinal herbs used in traditional medicine in cote d’ivoire for the treatment of anaemia. Afr J Tradit Complement 9(1):81–87

    CAS  Google Scholar 

  • Lanning FC, Eleuterius LN (1989) Silica deposition in some C3 and C4 species of grasses, sedges and composites in the USA. Ann Bot Lond 63:395–410

    Google Scholar 

  • Laue M, Hause G, Dietrich D, Wielage B (2007) Ultrastructure and microanalysis of silica bodies in Dactylis glomerata L. Microchim Acta 156:103–107

    Article  Google Scholar 

  • Lux A, Luxová M, Abe J, Tanimoto E, Hattori T, Inanaga S (2003) The dynamics of silicon deposition in the sorghum root endodermis. New Phytol 158:437–441

    Article  CAS  Google Scholar 

  • Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam

    Google Scholar 

  • Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007a) An efflux transporter of silicon in rice. Nature 448:209–211

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Tamai K, Mitani N (2007b) Genotypic difference in Si uptake and expression of Si transporter genes in rice. Plant Physiol 145:919–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melo SP, Monteiro FA, Bona FD (2010) Silicon distribution and accumulation in shoot tissue of the tropical forage grass Brachiaria brizantha. Plant Soil 336:241–249

    Article  Google Scholar 

  • Mitani N, Chiba Y, Yamaji N, Ma JF (2009) Identification and characterization of maize and barley Lsi2-like silicon efflux transporters reveals a distinct silicon uptake system from that in rice. Plant Cell 21(7):2133–2142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Motomura H, Mita N, Suzuki M (2002) Silica accumulation in long-lived leaves of Sasa veitchii (Carriére) Rehder (Poaceae–Bambusoideae). Ann Bot Lond 90:149–152

    Article  CAS  Google Scholar 

  • Narayanan K, Holzhüter G, Gerber T (2004) Study of silica structure in spelt (Triticum spelta) by electron microscopy. Proc EMC 2004, Antwerp, Belgium

  • Ortuñez E, de la Fuente V (2010) Epidermal micromorphology of the genus Festuca L. (Poaceae) in the Iberian Peninsula. Plant Syst Evol 284:201–2018

    Article  Google Scholar 

  • Piperno DR (2006) Phytoliths: A Comprehensive Guide for Archaeologists and Paleoecologists, Rowman and Littlefield

  • Piperno DR, Pearsall DM (1998) The silica bodies of tropical American grasses: morphology, taxonomy, and implications for grass systematics and fossil phytolith identification. Ann Smithson Inst 85:1–40

    Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69(4):377–440

    Article  Google Scholar 

  • Reay PF, Bennett WD (1987) Determination of amorphous silica and total silica in plant materials. Anal Chim Acta 198:145–152

    Article  CAS  Google Scholar 

  • Robbins CT, Mole S, Hagerman AE, Hanley TA (1987) Role of tannins in defending plants against ruminants: reduction in dry matter digestion? Ecology 68:1606–1615

    Article  CAS  Google Scholar 

  • Rodriguez N, Menendez N, Tornero J, Amils R, de la Fuente V (2005) Internal iron biomineralization in Imperata cylindrica, a perennial grass: chemical composition, speciation and plant localization. New Phytol 165:781–789

    Article  CAS  PubMed  Google Scholar 

  • Saijonkari-Pahkala K (2001) Non-wood plants as raw material for pulp and paper. Agricultural and Food Science in Finland 10, Suppl. 1: p. 101. Dissertation, Helsinki University

  • Sangster AG, Parry DW (1976) The ultrastructure and electron-probe microassay of silicon deposits in the endodermis of the seminal roots of Shorgum bicolour (L.) Moench. Ann Bot Lond 40(3):447–459

    CAS  Google Scholar 

  • Takeoka Y, Wada T, Naito K, Kaufman PB (1984) Studies on silicification of epidermal tissues of grasses as investigated by soft X-ray image analysis. Jpn J Crop Sci 53:197–203

    Article  Google Scholar 

  • Wallace A (1989) Relationships among nitrogen, silicon, and heavy metal uptake by plants. Soil Sci 147:457–460

    Article  CAS  Google Scholar 

  • Yamaji N, Ma JF (2007) Spatial distribution and temporal variation of the rice silicon transporter Lsi11. Plant Physiol 143:1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuluaga J, Rodriguez N, Rivas-Ramirez I, de la Fuente V, Rufo L, Amils R (2011) An improved semiquantitative method for elemental analysis of plants using inductive coupled plasma mass spectrometry. Biol Trace Elem Res 144(1–3):1302–1317

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the personnel of the Centro Nacional de Microcopía and the transmission electron microscopy service of the Centro de Biología Molecular. This study was supported by grant CTM2010-18456 from the Spanish Ministerio de Ciencia e Innovación. A. Franco is a Spanish Ministerio de Ciencia e Innovación fellow.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicenta de la Fuente.

Additional information

Handling Editor: Alexander Schulz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rufo, L., Franco, A. & de la Fuente, V. Silicon in Imperata cylindrica (L.) P. Beauv: content, distribution, and ultrastructure. Protoplasma 251, 921–930 (2014). https://doi.org/10.1007/s00709-013-0594-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0594-8

Keywords

Navigation