Skip to main content
Log in

Immunolocalization of alpha-keratins and associated beta-proteins in lizard epidermis shows that acidic keratins mix with basic keratin-associated beta-proteins

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The differentiation of the corneous layers of lizard epidermis has been analyzed by ultrastructural immunocytochemistry using specific antibodies against alpha-keratins and keratin associated beta-proteins (KAbetaPs, formerly indicated as beta-keratins). Both beta-cells and alpha-cells of the corneous layer derive from the same germinal layer. An acidic type I alpha-keratin is present in basal and suprabasal layers, early differentiating clear, oberhautchen, and beta-cells. Type I keratin apparently disappears in differentiated beta- and alpha-layers of the mature corneous layers. Conversely, a basic type II alpha-keratin rich in glycine is absent or very scarce in basal and suprabasal layers and this keratin likely does not pair with type I keratin to form intermediate filaments but is weakly detected in the pre-corneous and corneous alpha-layer. Single and double labeling experiments show that in differentiating beta-cells, basic KAbetaPs are added and replace type-I keratin to form the hard beta-layer. Epidermal alpha-keratins contain scarce cysteine (0.2–1.4 %) that instead represents 4–19 % of amino acids present in KAbetaPs. Possible chemical bonds formed between alpha-keratins and KAbetaPs may derive from electrostatic interactions in addition to cross-linking through disulphide bonds. Both the high content in glycine of keratins and KAbetaPs may also contribute to increase the hydrophobicy of the beta- and alpha-layers and the resistance of the corneous layer. The increase of gly-rich KAbetaPs amount and the bonds to the framework of alpha-keratins give rise to the inflexible beta-layer while the cys-rich KAbetaPs produce a pliable alpha-layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alibardi L (2003) Adaptation to the land: The skin of reptiles in comparison to that of amphibians and endotherm amniotes. J Exp Zool B 298:12–41

    Article  Google Scholar 

  • Alibardi L (2013a) Cornification in reptilian epidermis occurs through the deposition of keratin associated beta proteins (beta-keratins) onto a scaffold of intermediate filament keratins. J Morphol 274:175–193

    Article  CAS  PubMed  Google Scholar 

  • Alibardi L (2013b) Comparative immunolocalization of keratin-associated beta-proteins (beta-keratins) supports a new explanation for the cyclical process of keratinocyte differentiation in lizard epidermis. Acta Zool. doi:10.1111/azo.12030

  • Alibardi L (2013c) Immunolocalization of specific keratin associated beta-proteins (beta-keratins) in the adhesive setae of Gekko gecko. Tiss Cell 45(4):231–40

    Article  CAS  Google Scholar 

  • Alibardi L (2013d) Immunolocalization of keratin associated beta-proteins (beta-keratins) in the regenerating lizard epidermis indicates a new process for the differentiation of the epidermis in lepidosaurians. J Morphol 273:1272–1279

    Article  Google Scholar 

  • Alibardi L, Toni M (2006) Cytochemical, biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales. Prog Histoch Cytoch 40:73–134

    Article  CAS  Google Scholar 

  • Alibardi L, Toni M, Dalla Valle L (2007) Review. Hard keratins in reptilian epidermis in comparison to those of birds and mammals. Exp Dermatol 16:961–976

    Article  CAS  PubMed  Google Scholar 

  • Alibardi L, Dalla Valle L, Nardi A, Toni M (2009) Evolution of hard proteins in the sauropsid integument in relation to the cornification of skin derivatives in amniotes. J Anat 214:560–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alibardi L, Segalla A, Dalla Valle L (2012) Distribution of specific keratin associated beta-proteins (beta-keratins) in the epidermis of the lizard Anolis carolinensis clarifies the process of cornification in lepidosaurians. J Exp Zool 318B:388–403

    Article  Google Scholar 

  • Baden HP, Maderson PF (1970) Morphological and biophysical identification of fibrous proteins in the amniote epidermis. J Exp Zool 174:225–232

    Article  CAS  PubMed  Google Scholar 

  • Bragulla HH, Homberger DG (2009) Structure and functions of keratin proteins in simple, stratified, keratinized and cornified epithelia. J Anat 214:516–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coulombe PA, Omary MB (2002) 'Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 14:110–122

    Article  CAS  PubMed  Google Scholar 

  • Dalla Valle L, Nardi A, Bonazza G, Zuccal C, Emeera D, Alibardi L (2010) Forty keratin-associated β–proteins (β-keratins) form the hard layers of scales, claws and adhesive pads in the green anole lizard, Anolis carolinensis. J Exp Zool 314B:11–32

    Article  CAS  Google Scholar 

  • Dalla Valle L, Michieli F, Benato F, Skobo T, Alibardi L, (2013) Molecular characterization of alpha-keratins in comparison to associated beta-proteins in soft-shelled and hard-shelled turtles produced during the process of epidermal differentiation. J Exp Zool 320B:428–441

  • Eckhart L, Dalla Valle L, Jaeger K, Ballaun C, Szabo S, Nardi A, Buchberger M, Hermann M, Alibardi L, Tschachler E (2008) Identification of reptilian genes encoding hair keratin-like proteins suggests a new scenario for the evolutionary origin of hair. Proc Natl Acad Sci USA 105:18419–18423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser RDB, Parry DAD (2008) Molecular packing in the feather keratin filament. J Struct Biol 162:1–13

    Article  CAS  PubMed  Google Scholar 

  • Fraser RDB, Parry DAD (2011) The structural basis of the filament-matrix texture in the avian/reptilian group of hard beta-keratins. J Struct Biol 173:391–405

    Article  CAS  PubMed  Google Scholar 

  • Fuchs E, Marchuk D (1983) Type I and type II keratins have evolved from lower eukaryotes to form the epidermal intermediate filaments in mammalian skin. Proc Natl Acad Sci USA 80:5857–5861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallahan DL, Keiper-Hrynko NM, Ganzke TS, Toni M, Dalla Valle L, Alibardi L (2008) Gene expression in analysis of adhesive pads of gecko digits shows they mainly code for significant production of cysteine-rich and glycine-rich beta-keratins. J Exp Zool 312B:58–73

    Article  Google Scholar 

  • Kirfel J, Magin TM, Reichelt J (2003) Keratins: A structural scaffold with emerging functions. Cell Mot Life Sci 60:56–71

    Article  CAS  Google Scholar 

  • Kreplak A, Franbourg A, Briki F, Leroy F, Dalle D, Doucet J (2002) A new deformation model of hard α-fibers at the nanometer scale: Implications for hard α-keratin intermediate filaments mechanical properties. Biophys J 82:2265–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landmann L (1986) The skin of reptiles: Epidermis and dermis. In: Bereither-Hahn J, Matoltsy G, Sylvia-Richards K (eds) Biology of the integument, Vertebrate. Springer Verlag, New York, pp 150–187

    Chapter  Google Scholar 

  • Maderson PFA (1972) When? Why? and How?: Some speculations on the evolution of the vertebrate integument. Amer Zool 12:159–171

    Article  Google Scholar 

  • Maderson PF (1985) Some developmental problems of the reptilian integument. In: Gans C, Billett F, Maderson PF (eds) Biology of reptilia: Development. Wiley, New York, pp 525–598

    Google Scholar 

  • Maderson PFA, Rabinowitz T, Tandler B, Alibardi L (1998) Ultrastructural contributions to an understanding of the cellular mechanisms involved in lizard skin shedding with comments on the function and evolution of a unique lepidosaurian phenomenon. J Morphol 236:1–24

    Article  Google Scholar 

  • O'Guin MW, Galvin S, Schermer A, Sun TT (1987) Pattern of keratin expression define distinct pathways of epithelial development and differentiation. In: Sawyer R.H. editor. Topics in Developmental Biology 22:97–125

    Article  Google Scholar 

  • Sawyer RH, Glenn TC, French JO, Mays B, Shames RB, Barnes GL, Rhodes W, Ishikawa Y (2000) The expression of beta (β) keratins in the epidermal appendages of reptiles and birds. Amer Zool 40:530–539

    CAS  Google Scholar 

  • Scala C, Cenacchi G, Ferrari C, Pasquinelli G, Preda P, Manara G (1992) A new acrylic resin formulation: A useful tool for histological, ultrastructural, and immunocytochemical investigations. J Histochem Cytochem 40:1799–1804

    Article  CAS  PubMed  Google Scholar 

  • Steinert PM, Freedberg IM (1991) Molecular and cellular biology of keratins. In: Goldsmith LA (ed) Physiology, biochemistry, and molecular biology of the skin. Oxford University Press, New York, pp 113–147

    Google Scholar 

  • Sun TT, Eichner R, Nelson WG, Scheffer-Tseng BA, Weiss RA, Jarvinen M, Woodcock-Mitchell J (1983) Keratin classes: Molecular markers for different types of epithelial differentiation. J Inv Dermatol 81:109s–115s

    Article  CAS  Google Scholar 

  • Sybert VP, Dale BA, Holbrook KA (1985) Ichthyosis vulgaris: Identification of a defect in synthesis of filaggrin correlated with an absence of keratohyalin granules. J Invest Dermatol 84:191–194

    Article  CAS  PubMed  Google Scholar 

  • Toni M, Valle LD, Alibardi L (2007) Hard (Beta-)keratins in the epidermis of reptiles: Composition, sequence, and molecular organization. J Proteome Res 6:3377–3392

    Article  CAS  PubMed  Google Scholar 

  • Vandebergh W, Bossuyt F (2012) Radiation and functional diversification of alpha keratins during early vertebrate evolution. Mol Biol Evol 29:995–1004

    Article  CAS  PubMed  Google Scholar 

  • Wyld JA, Brush AH (1979) The molecular heterogeneity and diversity of reptilian keratins. J Mol Evol 12:331–347

    Article  CAS  PubMed  Google Scholar 

  • Wyld JA, Brush AH (1983) Keratin diversity in the reptilian epidermis. J Exp Zool 225:387–396

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was in part self-supported (Comparative Histolab) and also with a Grant from the Italian Ministry of Education and Scientific Research (Grant 2008 AXS E-002). The electrophoretic separation and Western blotting were carried on at the Proteome Service Facility in the Department of Biology, University of Bologna (Dr. F. Boschetti).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Alibardi.

Additional information

Handling Editor: Pavel Dráber

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alibardi, L. Immunolocalization of alpha-keratins and associated beta-proteins in lizard epidermis shows that acidic keratins mix with basic keratin-associated beta-proteins. Protoplasma 251, 827–837 (2014). https://doi.org/10.1007/s00709-013-0585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0585-9

Keywords

Navigation