Skip to main content
Log in

Super-resolution localization microscopy with photoactivatable fluorescent marker proteins

  • Special Issue: New/Emerging Techniques in Biological Microscopy
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Fluorescent proteins (FPs) have become popular imaging tools because of their high specificity, minimal invasive labeling and allowing visualization of proteins and structures inside living organisms. FPs are genetically encoded and expressed in living cells, therefore, labeling involves minimal effort in comparison to approaches involving synthetic dyes. Photoactivatable FPs (paFPs) comprise a subclass of FPs that can change their absorption/emission properties such as brightness and color upon irradiation. This methodology has found a broad range of applications in the life sciences, especially in localization-based super-resolution microscopy of cells, tissues and even entire organisms. In this review, we discuss recent developments and applications of paFPs in super-resolution localization imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscopy

DNA:

Deoxyribonucleic acid

FRET:

Förster resonance energy transfer

FP:

Fluorescent protein

FPALM:

Fluorescence photoactivation localization microscopy

GFP:

Green fluorescent protein

MRI:

Magnetic resonance imaging

OCT:

Optical coherence tomography

paFP:

Photoactivatable fluorescent protein

PALM:

Photoactivated localization microscopy

PET:

Positron emission tomography

PSF:

Point spread function

RESOLFT:

Reversible saturable optical fluorescence transitions

SOFI:

Stochastic optical fluctuation imaging

SPIM:

Selective plane illumination microscopy

SSIM:

Saturated structured illumination microscopy

STED:

Stimulated emission depletion

STORM:

Stochastic optical reconstruction microscopy

TIRF:

Total internal reflection fluorescence

References

  • Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch f Microsc Anat 9:413–468

    Google Scholar 

  • Adam V, Lelimousin M, Boehme S, Desfonds G, Nienhaus K, Field MJ, Wiedenmann J, McSweeney S, Nienhaus GU, Bourgeois D (2008) Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations. Proc Natl Acad Sci U S A 105(47):18343–18348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adam V, Moeyaert B, David CC, Mizuno H, Lelimousin M, Dedecker P, Ando R, Miyawaki A, Michiels J, Engelborghs Y, Hofkens J (2011) Rational design of photoconvertible and biphotochromic fluorescent proteins for advanced microscopy applications. Chem Biol 18(10):1241–1251

    CAS  PubMed  Google Scholar 

  • Ando R, Hama H, Yamamoto-Hino M, Mizuno H, Miyawaki A (2002) An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc Natl Acad Sci U S A 99(20):12651–12656

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ando R, Mizuno H, Miyawaki A (2004) Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306(5700):1370–1373

    CAS  PubMed  Google Scholar 

  • Andresen M, Stiel AC, Fölling J, Wenzel D, Schönle A, Egner A, Eggeling C, Hell SW, Jakobs S (2008) Photoswitchable fluorescent proteins enable monochromatic multilabel imaging and dual color fluorescence nanoscopy. Nat Biotechnol 26(9):1035–1040

    CAS  PubMed  Google Scholar 

  • Axelrod D, Thompson NL, Burghardt TP (1982) Total internal reflection fluorescence microscopy. J Microsc 129:19–28

    Google Scholar 

  • Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645

    CAS  PubMed  Google Scholar 

  • Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    PubMed  Google Scholar 

  • Bossi M, Fölling J, Belov VN, Boyarskiy VP, Medda R, Egner A, Eggeling C, Schönle A, Hell SW (2008) Multicolor far-field fluorescence nanoscopy through isolated detection of distinct molecular species. Nano Lett 8(8):2463–2468

    CAS  PubMed  Google Scholar 

  • Brakemann T, Stiel AC, Weber G, Andresen M, Testa I, Grotjohann T, Leutenegger M, Plessmann U, Urlaub H, Eggeling C, Wahl MC, Hell SW, Jakobs S (2011) A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching. Nat Biotechnol 29(10):942–947

    CAS  PubMed  Google Scholar 

  • Brodehl A, Hedde PN, Dieding M, Fatima A, Walhorn V, Gayda S, Saric T, Klauke B, Gummert J, Anselmetti D, Heilemann M, Nienhaus GU, Milting H (2012) Dual color photoactivation localization microscopy of cardiomyopathy-associated desmin mutants. J Biol Chem 287(19):16047–16057

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF, Hess HF, Clayton DA (2011) Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol Cell Biol 31(24):4994–5010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burnette DT, Sengupta P, Dai Y, Lippincott-Schwartz J, Kachar B (2011) Bleaching/blinking assisted localization microscopy for superresolution imaging using standard fluorescent molecules. Proc Natl Acad Sci U S A 108(52):21081–21086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263(5148):802–805

    CAS  PubMed  Google Scholar 

  • Chang H, Zhang M, Ji W, Chen J, Zhang Y, Liu B, Lu J, Zhang J, Xu P, Xu T (2012) A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci U S A 109(12):4455–4460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chudakov DM, Verkhusha VV, Staroverov DB, Souslova EA, Lukyanov S, Lukyanov KA (2004) Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22(11):1435–1439

    CAS  PubMed  Google Scholar 

  • Cormack BP, Valdivia RH, Falkow S (1996) FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173(1 Spec No):33–38

    CAS  PubMed  Google Scholar 

  • Cox S, Rosten E, Monypenny J, Jovanovic-Talisman T, Burnette DT, Lippincott-Schwartz J, Jones GE, Heintzmann R (2012) Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods 9(2):195–200

    CAS  Google Scholar 

  • Dedecker P, Mo GC, Dertinger T, Zhang J (2012) Widely accessible method for superresolution fluorescence imaging of living systems. Proc Natl Acad Sci U S A 109(27):10909–10914

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dempsey GT, Vaughan JC, Chen KH, Bates M, Zhuang X (2011) Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging. Nat Methods 8(12):1027–1036

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J (2009) Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci U S A 106(52):22287–22292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dickson RM, Cubitt AB, Tsien RY, Moerner WE (1997) On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature 388(6640):355–358

    CAS  PubMed  Google Scholar 

  • Fuchs J, Böhme S, Oswald F, Hedde PN, Krause M, Wiedenmann J, Nienhaus GU (2010) A photoactivatable marker protein for pulse-chase imaging with superresolution. Nat Methods 7(8):627–630

    CAS  PubMed  Google Scholar 

  • Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F, Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136

    CAS  PubMed  Google Scholar 

  • Gayda S, Nienhaus K, Nienhaus GU (2012) Mechanistic insights into reversible photoactivation in proteins of the GFP family. Biophys J 103(12):2521–2531

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grotjohann T, Testa I, Leutenegger M, Bock H, Urban NT, Lavoie-Cardinal F, Willig KI, Eggeling C, Jakobs S, Hell SW (2011) Diffraction-unlimited all-optical imaging and writing with a photochromic GFP. Nature 478(7368):204–208

    CAS  PubMed  Google Scholar 

  • Grotjohann T, Testa I, Reuss M, Brakemann T, Eggeling C, Hell SW, Jakobs S (2012) rsEGFP2 enables fast RESOLFT nanoscopy of living cells. Elife 1:e00248

    PubMed Central  PubMed  Google Scholar 

  • Gunewardene MS, Subach FV, Gould TJ, Penoncello GP, Gudheti MV, Verkhusha VV, Hess ST (2011) Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J 101(6):1522–1528

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086

    CAS  PubMed Central  PubMed  Google Scholar 

  • Habuchi S, Tsutsui H, Kochaniak AB, Miyawaki A, van Oijen AM (2008) mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One 3(12):e3944

    PubMed Central  PubMed  Google Scholar 

  • Hedde PN, Fuchs J, Oswald F, Wiedenmann J, Nienhaus GU (2009) Online image analysis software for photoactivation localization microscopy. Nat Methods 6(10):689–690

    CAS  PubMed  Google Scholar 

  • Hedde PN, Nienhaus GU (2010) Optical imaging of nanoscale cellular structures. Biophys Rev 2(4):147–158

    CAS  Google Scholar 

  • Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6(2):178–182

    CAS  PubMed  Google Scholar 

  • Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158

    CAS  PubMed  Google Scholar 

  • Hell SW, Jakobs S, Kastrup L (2003) Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl Phys A: Mater Sci Process 77:859–860

    CAS  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission–depletion fluorescence microscopy. Opt Lett 19(11):780–782

    CAS  PubMed  Google Scholar 

  • Helm M, Kobitski AY, Nienhaus GU (2009) Single-molecule Förster resonance energy transfer studies of RNA structure, dynamics and function. Biophys Rev 1(4):161–176

    CAS  Google Scholar 

  • Henderson JN, Ai HW, Campbell RE, Remington SJ (2007) Structural basis for reversible photobleaching of a green fluorescent protein homologue. Proc Natl Acad Sci U S A 104(16):6672–6677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hess ST, Gould TJ, Gudheti MV, Maas SA, Mills KD, Zimmerberg J (2007) Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc Natl Acad Sci U S A 104(44):17370–17375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hohenberger P, Eing C, Straessner R, Durst S, Frey W, Nick P (2011) Plant actin controls membrane permeability. Biochim Biophys Acta 1808(9):2304–2312

    CAS  PubMed  Google Scholar 

  • Huang B, Wang W, Bates M, Zhuang X (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254(5035):1178–1181

    CAS  PubMed  Google Scholar 

  • Huang F, Hartwich TM, Rivera-Molina FE, Lin Y, Duim WC, Long JJ, Uchil PD, Myers JR, Baird MA, Mothes W, Davidson MW, Toomre D, Bewersdorf J (2013) Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat Methods 10(7):653–658

    CAS  PubMed  Google Scholar 

  • Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH (2004) Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305(5686):1007–1009

    CAS  PubMed  Google Scholar 

  • Ivanchenko S, Glaschick S, Röcker C, Oswald F, Wiedenmann J, Nienhaus GU (2007) Two-photon excitation and photoconversion of EosFP in dual-color 4Pi confocal microscopy. Biophys J 92(12):4451–4457

    CAS  PubMed Central  PubMed  Google Scholar 

  • Izeddin I, Specht CG, Lelek M, Darzacq X, Triller A, Zimmer C, Dahan M (2011) Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS One 6(1):e15611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones SA, Shim SH, He J, Zhuang X (2011) Fast, three-dimensional super-resolution imaging of live cells. Nat Methods 8(6):499–508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6):527–529

    CAS  PubMed  Google Scholar 

  • Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, Hess HF, Waterman CM (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468(7323):580–584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keppler A, Pick H, Arrivoli C, Vogel H, Johnsson K (2004) Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci U S A 101(27):9955–9959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein T, Loschberger A, Proppert S, Wolter S, van de Linde S, Sauer M (2011) Live-cell dSTORM with SNAP-tag fusion proteins. Nat Methods 8(1):7–9

    CAS  PubMed  Google Scholar 

  • Knoll M, Ruska E (1932) Das Elektronenmikroskop. Z Physik 78:318–339

    CAS  Google Scholar 

  • Koster AJ, Klumperman J (2003) Electron microscopy in cell biology: integrating structure and function. Nat Rev Mol Cell Biol Suppl:SS6-10

  • Kredel S, Oswald F, Nienhaus K, Deuschle K, Röcker C, Wolff M, Heilker R, Nienhaus GU, Wiedenmann J (2009) mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS One 4(2):e4391

    PubMed Central  PubMed  Google Scholar 

  • Lauterbur PC (1973) Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242:190–191

    CAS  Google Scholar 

  • Lee J, Miyanaga Y, Ueda M, Hohng S (2012) Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging. Biophys J 103(8):1691–1697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehmann M, Rocha S, Mangeat B, Blanchet F, Uji IH, Hofkens J, Piguet V (2011) Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction. PLoS Pathog 7(12):e1002456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Ishitsuka Y, Hedde PN, Nienhaus GU (2013) Fast and efficient molecule detection in localization-based super-resolution microscopy by parallel adaptive histogram equalization. ACS Nano 7(6):5207–5214

    CAS  PubMed  Google Scholar 

  • Lillemeier BF, Mortelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11(1):90–96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lukyanov KA, Fradkov AF, Gurskaya NG, Matz MV, Labas YA, Savitsky AP, Markelov ML, Zaraisky AG, Zhao X, Fang Y, Tan W, Lukyanov SA (2000) Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. J Biol Chem 275(34):25879–25882

    CAS  PubMed  Google Scholar 

  • Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF, Betzig E, Lippincott-Schwartz J (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5(2):155–157

    CAS  PubMed  Google Scholar 

  • Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, Markelov ML, Lukyanov SA (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17(10):969–973

    CAS  PubMed  Google Scholar 

  • McKinney SA, Murphy CS, Hazelwood KL, Davidson MW, Looger LL (2009) A bright and photostable photoconvertible fluorescent protein. Nat Methods 6(2):131–133

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, Fradkov AF, Gaintzeva A, Lukyanov KA, Lukyanov S, Gadella TW, Chudakov DM (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4(7):555–557

    CAS  PubMed  Google Scholar 

  • Miyawaki A (2002) Green fluorescent protein-like proteins in reef Anthozoa animals. Cell Struct Funct 27(5):343–347

    CAS  PubMed  Google Scholar 

  • Miyawaki A, Shcherbakova DM, Verkhusha VV (2012) Red fluorescent proteins: chromophore formation and cellular applications. Curr Opin Struct Biol 22(5):679–688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mizuno H, Mal TK, Tong KI, Ando R, Furuta T, Ikura M, Miyawaki A (2003) Photo-induced peptide cleavage in the green-to-red conversion of a fluorescent protein. Mol Cell 12(4):1051–1058

    CAS  PubMed  Google Scholar 

  • Mizuno H, Mal TK, Walchli M, Fukano T, Ikura M, Miyawaki A (2010) Molecular basis of photochromism of a fluorescent protein revealed by direct 13C detection under laser illumination. J Biomol NMR 48(4):237–246

    CAS  PubMed  Google Scholar 

  • Mizuno H, Mal TK, Walchli M, Kikuchi A, Fukano T, Ando R, Jeyakanthan J, Taka J, Shiro Y, Ikura M, Miyawaki A (2008) Light-dependent regulation of structural flexibility in a photochromic fluorescent protein. Proc Natl Acad Sci U S A 105(27):9227–9232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nienhaus GU, Nienhaus K, Holzle A, Ivanchenko S, Renzi F, Oswald F, Wolff M, Schmitt F, Röcker C, Vallone B, Weidemann W, Heilker R, Nar H, Wiedenmann J (2006) Photoconvertible fluorescent protein EosFP: biophysical properties and cell biology applications. Photochem Photobiol 82(2):351–358

    CAS  PubMed  Google Scholar 

  • Nienhaus GU, Wiedenmann J (2009) Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. ChemPhysChem 10(9–10):1369–1379

    CAS  PubMed  Google Scholar 

  • Nienhaus K, Nienhaus GU, Wiedenmann J, Nar H (2005) Structural basis for photo-induced protein cleavage and green-to-red conversion of fluorescent protein EosFP. Proc Natl Acad Sci U S A 102(26):9156–9159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nyquist H (1928) Certain topics in telegraph transmission theory. Trans AIEE 47:617–644

    Google Scholar 

  • Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273(5280):1392–1395

    CAS  PubMed  Google Scholar 

  • Owen DM, Rentero C, Rossy J, Magenau A, Williamson D, Rodriguez M, Gaus K (2010) PALM imaging and cluster analysis of protein heterogeneity at the cell surface. J Biophotonics 3(7):446–454

    CAS  PubMed  Google Scholar 

  • Patterson GH, Lippincott-Schwartz J (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297(5588):1873–1877

    CAS  PubMed  Google Scholar 

  • Pavani SR, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, Piestun R, Moerner WE (2009) Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. Proc Natl Acad Sci U S A 106(9):2995–2999

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111(2):229–233

    CAS  PubMed  Google Scholar 

  • Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MG (2012) Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A 109(3):E135–E143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossier O, Octeau V, Sibarita JB, Leduc C, Tessier B, Nair D, Gatterdam V, Destaing O, Albiges-Rizo C, Tampe R, Cognet L, Choquet D, Lounis B, Giannone G (2012) Integrins beta1 and beta3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat Cell Biol 14(10):1057–1067

    CAS  PubMed  Google Scholar 

  • Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schenk A, Ivanchenko S, Röcker C, Wiedenmann J, Nienhaus GU (2004) Photodynamics of red fluorescent proteins studied by fluorescence correlation spectroscopy. Biophys J 86(1 Pt 1):384–394

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schönle A, Hell SW (2007) Fluorescence nanoscopy goes multicolor. Nat Biotechnol 25(11):1234–1235

    PubMed  Google Scholar 

  • Sengupta P, Jovanovic-Talisman T, Skoko D, Renz M, Veatch SL, Lippincott-Schwartz J (2011) Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat Methods 8(11):969–975

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22(12):1567–1572

    CAS  PubMed  Google Scholar 

  • Shang L, Dong S, Nienhaus GU (2011) Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 6(4):401–418

    CAS  Google Scholar 

  • Shannon CE (1949) Communication in the presence of noise. Proceedings of the IRE 37:10–21

    Google Scholar 

  • Shcherbakova DM, Subach OM, Verkhusha VV (2012) Red fluorescent proteins: advanced imaging applications and future design. Angew Chem Int Ed Engl 51(43):10724–10738

    CAS  PubMed  Google Scholar 

  • Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223–239

    CAS  PubMed  Google Scholar 

  • Shroff H, Galbraith CG, Galbraith JA, Betzig E (2008) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5(5):417–423

    CAS  PubMed  Google Scholar 

  • Shroff H, Galbraith CG, Galbraith JA, White H, Gillette J, Olenych S, Davidson MW, Betzig E (2007) Dual-color superresolution imaging of genetically expressed probes within individual adhesion complexes. Proc Natl Acad Sci U S A 104(51):20308–20313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shtengel G, Galbraith JA, Galbraith CG, Lippincott-Schwartz J, Gillette JM, Manley S, Sougrat R, Waterman CM, Kanchanawong P, Davidson MW, Fetter RD, Hess HF (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106(9):3125–3130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sochacki KA, Larson BT, Sengupta DC, Daniels MP, Shtengel G, Hess HF, Taraska JW (2012) Imaging the post-fusion release and capture of a vesicle membrane protein. Nat Commun 3:1154

    PubMed Central  PubMed  Google Scholar 

  • Stiel AC, Andresen M, Bock H, Hilbert M, Schilde J, Schönle A, Eggeling C, Egner A, Hell SW, Jakobs S (2008) Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys J 95(6):2989–2997

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stiel AC, Trowitzsch S, Weber G, Andresen M, Eggeling C, Hell SW, Jakobs S, Wahl MC (2007) 1.8 A bright-state structure of the reversibly switchable fluorescent protein Dronpa guides the generation of fast switching variants. Biochem J 402(1):35–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subach FV, Patterson GH, Manley S, Gillette JM, Lippincott-Schwartz J, Verkhusha VV (2009) Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6(2):153–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV (2010a) Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc 132(18):6481–6491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Subach FV, Zhang L, Gadella TW, Gurskaya NG, Lukyanov KA, Verkhusha VV (2010b) Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem Biol 17(7):745–755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ter-Pogossian MM, Phelps ME, Hoffman EJ, Mullani NA (1975) A positron-emission transaxial tomograph for nuclear imaging (PETT). Radiology 114(1):89–98

    CAS  PubMed  Google Scholar 

  • Thompson RE, Larson DR, Webb WW (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2):159–161

    CAS  PubMed  Google Scholar 

  • Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    CAS  PubMed  Google Scholar 

  • Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6(3):233–238

    CAS  PubMed Central  PubMed  Google Scholar 

  • van de Linde S, Sauer M, Heilemann M (2008) Subdiffraction-resolution fluorescence imaging of proteins in the mitochondrial inner membrane with photoswitchable fluorophores. J Struct Biol 164(3):250–254

    PubMed  Google Scholar 

  • van Thor JJ, Gensch T, Hellingwerf KJ, Johnson LN (2002) Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat Struct Biol 9(1):37–41

    PubMed  Google Scholar 

  • Vaughan JC, Jia S, Zhuang X (2012) Ultrabright photoactivatable fluorophores created by reductive caging. Nat Methods 9(12):1181–1184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vaziri A, Tang J, Shroff H, Shank CV (2008) Multilayer three-dimensional super resolution imaging of thick biological samples. Proc Natl Acad Sci U S A 105(51):20221–20226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verkhusha VV, Lukyanov KA (2004) The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotechnol 22(3):289–296

    CAS  PubMed  Google Scholar 

  • Verkhusha VV, Sorkin A (2005) Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem Biol 12(3):279–285

    CAS  PubMed  Google Scholar 

  • Voie AH, Burns DH, Spelman FA (1993) Orthogonal-plane fluorescence optical sectioning: three-dimensional imaging of macroscopic biological specimens. J Microsc 170(Pt 3):229–236

    CAS  PubMed  Google Scholar 

  • Wiedenmann J (1997) Deutsches Patent- und Markenamt, Offenlegungsschrift, DE 197 18 640 A1:1–18.

  • Wiedenmann J, Gayda S, Adam V, Oswald F, Nienhaus K, Bourgeois D, Nienhaus GU (2011) From EosFP to mIrisFP: structure-based development of advanced photoactivatable marker proteins of the GFP-family. J Biophotonics 4(6):377–390

    CAS  PubMed  Google Scholar 

  • Wiedenmann J, Ivanchenko S, Oswald F, Nienhaus GU (2004a) Identification of GFP-like proteins in nonbioluminescent, azooxanthellate anthozoa opens new perspectives for bioprospecting. Mar Biotechnol (NY) 6(3):270–277

    CAS  Google Scholar 

  • Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Röcker C, Salih A, Spindler KD, Nienhaus GU (2004b) EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci U S A 101(45):15905–15910

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiedenmann J, Nienhaus GU (2006) Live-cell imaging with EosFP and other photoactivatable marker proteins of the GFP family. Expert Rev Proteomics 3(3):361–374

    CAS  PubMed  Google Scholar 

  • Wiedenmann J, Oswald F, Nienhaus GU (2009) Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life 61(11):1029–1042

    CAS  PubMed  Google Scholar 

  • Wombacher R, Heidbreder M, van de Linde S, Sheetz MP, Heilemann M, Cornish VW, Sauer M (2010) Live-cell super-resolution imaging with trimethoprim conjugates. Nat Methods 7(9):717–719

    CAS  PubMed  Google Scholar 

  • Yildiz A, Forkey JN, McKinney SA, Ha T, Goldman YE, Selvin PR (2003) Myosin V walks hand-over-hand: single fluorophore imaging with 1.5-nm localization. Science 300(5628):2061–2065

    CAS  PubMed  Google Scholar 

  • York AG, Ghitani A, Vaziri A, Davidson MW, Shroff H (2011) Confined activation and subdiffractive localization enables whole-cell PALM with genetically expressed probes. Nat Methods 8(4):327–333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zanacchi FC, Lavagnino Z, Donnorso MP, Del Bue A, Furia L, Faretta M, Diaspro A (2011) Live-cell 3D super-resolution imaging in thick biological samples. Nat Methods 8(12):1047–1049

    CAS  Google Scholar 

  • Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J, Xu P, Xu T (2012) Rational design of true monomeric and bright photoactivatable fluorescent proteins. Nat Methods 9(7):727–729

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the Center for Functional Nanostructures (CFN) and by DFG grant Ni 291/9.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ulrich Nienhaus.

Additional information

Handling Editor: J. W. Borst

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedde, P.N., Nienhaus, G.U. Super-resolution localization microscopy with photoactivatable fluorescent marker proteins. Protoplasma 251, 349–362 (2014). https://doi.org/10.1007/s00709-013-0566-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0566-z

Keywords

Navigation