Skip to main content
Log in

The role of ascorbate in protein folding

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Ascorbate was linked to protein folding a long time ago. At the first level of this connection, it had been shown that ascorbate functions as an essential cofactor in the hydroxylation enzymes involved in collagen synthesis. Although the hydroxylation reactions catalyzed by the members of the prolyl 4-hydroxylase family are considered to be ascorbate dependent, the hydroxylation of proline alone does not need ascorbate. Prolyl 4-hydroxylases participate in two catalytic reactions: one in which proline residues are hydroxylated, while 2-oxoglutarate is decarboxylated and molecular oxygen is consumed. This reaction is ascorbate independent. However, in another reaction, prolyl 4-hydroxylases catalyze the decarboxylation of 2-oxoglutarate uncoupled from proline hydroxylation but still needing molecular oxygen. At this time, ferrous iron is oxidized and the protein is rendered catalytically inactive until reduced by ascorbate. At the second level of the connection, the oxidation and the oxidized form of ascorbate, dehydroascorbate, is involved in the formation of disulfide bonds of secretory proteins. The significance of the dehydroascorbate reductase activity of protein disulfide isomerase was debated because protein disulfide isomerase as a dehydroascorbate reductase was found to be too slow to be the major route for the reduction of dehydroascorbate (and formation of disulfides) in the endoplasmic reticulum lumen. However, very recently, low tissue ascorbate levels and a noncanonical scurvy were observed in endoplasmic reticulum thiol oxidase- and peroxiredoxin 4-compromised mice. This novel observation implies that ascorbate may be involved in oxidative protein folding and creates a link between the disulfide bond formation (oxidative protein folding) and hydroxylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Sa'doni HH, Megson IL, Bisland S, Butler AR, Flitney FW (1997) Neocuproine, a selective Cu(I) chelator, and the relaxation of rat vascular smooth muscle by S-nitrosothiols. Br J Pharmacol 121:1047–1050

    Article  PubMed Central  PubMed  Google Scholar 

  • Bánhegyi G, Marcolongo P, Puskás F, Fulceri R, Mandl J, Benedetti A (1998) Dehydroascorbate and ascorbate trans-port in rat liver microsomal vesicles. J Biol Chem 273:2758–2762

    Article  PubMed  Google Scholar 

  • Bank RA, Robins SP, Wijmenga C, Breslau-Siderius LJ, Bardoel AF, van der Sluijs HA, Pruijs HE, TeKoppele JM (1999) Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17. Proc Natl Acad Sci 96:1054–1058

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Beighton P, De Paepe A, Steinmann B, Tsipouras P, Wenstrup RJ (1998) Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers-Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet 77:31–37

    Article  PubMed  CAS  Google Scholar 

  • Braakman I, Bulleid NJ (2011) Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem 80:71–99

    Article  PubMed  CAS  Google Scholar 

  • Cabibbo A, Pagani M, Fabbri M, Rocchi M, Farmery MR, Bulleid NJ, Sitia R (2000) ERO1-L, a human protein that favors disulfide bond formation in the endoplasmic reticulum. J Biol Chem 275:4827–4833

    Article  PubMed  CAS  Google Scholar 

  • Chin KT, Kang G, Qu J, Gardner LB, Coetzee WA, Zito E, Fishman GI, Ron D (2011) The sarcoplasmic reticulum luminal thiol oxidase ERO1 regulates cardiomyocyte excitation-coupled calcium release and response to hemodynamic load. FASEB J 25:2583–2591

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Csala M, Braun L, Mile V, Kardon T, Szarka A, Kupcsulik P, Mandl J, Bánhegyi G (1999) Ascorbate-mediated electron transfer in protein thiol oxidation in the endoplasmic reticulum. FEBS Lett 460:539–543

    Article  PubMed  CAS  Google Scholar 

  • Csala M, Mile V, Benedetti A, Mandl J, Bánhegyi G (2000) Ascorbate oxidation is a prerequisite for its transport into rat liver microsomal vesicles. Biochem J 349:413–415

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Csala M, Szarka A, Margittai É, Mile V, Kardon T, Braun L, Mandl J, Bánhegyi G (2001) Role of vitamin E in ascorbate-dependent protein thiol oxidation in rat liver endoplasmic reticulum. Arch Biochem Biophys 368:55–59

    Article  CAS  Google Scholar 

  • Edman JC, Ellis L, Blacher RW, Roth RA, Rutter WJ (1985) Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317:267–270

    Article  PubMed  CAS  Google Scholar 

  • Frand AR, Kaiser CA (1998) The ERO1 gene of yeast is required for oxidation of protein dithiols in the endoplasmic reticulum. Mol Cell 1:161–170

    Article  PubMed  CAS  Google Scholar 

  • Goldberger RF, Epstein CJ, Anfinsen CB (1963) Acceleration of reactivation of reduced bovine pancreatic ribonuclease by a microsomal system from rat liver. J Biol Chem 238:628–635

    PubMed  CAS  Google Scholar 

  • Goldberger RF, Epstein CJ, Anfinsen CB (1964) Purification and properties of a microsomal enzyme system catalyzing the reactivation of reduced ribonuclease and lysozyme. J Biol Chem 239:1406–1410

    PubMed  CAS  Google Scholar 

  • Hawkins HC, Freedman RB (1975) Randomly reoxidised soybean trypsin inhibitor and the possibility of conformational barriers to disulphide isomerization in proteins. FEBS Lett 58:7–10

    Article  PubMed  CAS  Google Scholar 

  • Iuchi Y, Okada F, Tsunoda S, Kibe N, Shirasawa N, Ikawa M, Okabe M, Ikeda Y, Fujii J (2009) Peroxiredoxin 4 knockout results in elevated spermatogenic cell death via oxidative stress. Biochem J 419:149–158

    Article  PubMed  CAS  Google Scholar 

  • Kivirikko K, Myllylä R, Pihlajaniemi T (1989) Protein hydroxylation: prolyl 4-hydroxylase, an enzyme with four cosubstrates and a multifunctional subunit. The FASEB J 3:1609–1617

    CAS  Google Scholar 

  • Kivirikko KI, Prockop DJ (1967) Partial characterization of protocollagen from embryonic cartilage. Biochem J 102:432–42

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kivirikko KI, Shudo K, Sakakibara S, Prockop DJ (1972) Protocollagen lysine hydroxylase. Hydroxylation of synthetic peptides and the stoichiometric decarboxylation of α-ketoglutarate. Biochemistry 11:122–129

    Article  PubMed  CAS  Google Scholar 

  • Lambert N, Freedman RB (1985) The latency of rat liver microsomal protein disulphide-isomerase. Biochem J 228:635–645

    PubMed Central  PubMed  CAS  Google Scholar 

  • Margittai E, Bánhegyi G, Kiss A, Nagy G, Mandl J, Schaff Z, Csala M (2005) Scurvy leads to endoplasmic reticulum stress and apoptosis in the liver of guinea pigs. J Nutr 135:2530–2534

    PubMed  CAS  Google Scholar 

  • Margittai E, Sitia R (2011) Oxidative protein folding in the secretory pathway and redox signaling across compartments and cells. Traffic 12:1–8

    Article  PubMed  CAS  Google Scholar 

  • Myllyharju J (2003) Prolyl 4-hydroxylases, the key enzymes of collagen biosynthesis. Matrix Biol 22:15–24

    Article  PubMed  CAS  Google Scholar 

  • Myllyharju J (2008) Prolyl 4-hydroxylases, key enzymes in the synthesis of collagens and regulation of the response to hypoxia, and their roles as treatment targets. Ann Med 40:402–417

    Article  PubMed  CAS  Google Scholar 

  • Myllylä R, Majamaa K, Günzler V, Hanauske-Abel HM, Kivirikko KI (1984) Ascorbate is consumed stoichiometrically in the uncoupled reactions catalyzed by prolyl 4-hydroxylase and lysyl hydroxylase. J Biol Chem 259:5403–5405

    PubMed  Google Scholar 

  • Nardai G, Braun L, Csala M, Mile V, Csermely P, Benedetti A, Mandl J, Bánhegyi G (2001) Protein-disulfide isomerase and protein thiol-dependent dehydroascorbate reduction and ascorbate accumulation in the lumen of the endoplasmic reticulum. J Biol Chem 276:8825–8828

    Article  PubMed  CAS  Google Scholar 

  • Nguyen VD, Saaranen MJ, Karala AR, Lappi AK, Wang L, Raykhel IB, Alanen HI, Salo KE, Wang CC, Ruddock LW (2011) Two endoplasmic reticulum PDI peroxidases increase the efficiency of the use of peroxide during disulfide bond formation. J Mol Biol 406:503–515

    Article  PubMed  CAS  Google Scholar 

  • Niki E (1987) Interaction of ascorbate and α-tocopherol. Ann NY Acad Sci 498:186–199

    Article  PubMed  CAS  Google Scholar 

  • Pagani M, Fabbri M, Benedetti C, Fassio A, Pilati S, Bulleid NJ, Cabibbo A, Sitia R (2000) Endoplasmic reticulum oxidoreductin 1-lbeta (ERO1-Lbeta), a human gene induced in the course of the unfolded protein response. J Biol Chem 275:23685–23692

    Article  PubMed  CAS  Google Scholar 

  • Pihlajaniemi T, Myllylä R, Kivirikko K (1991) Prolyl 4-hydroxylase and its role in collagen synthesis. J Hepatol 13:S2–S7

    Article  PubMed  CAS  Google Scholar 

  • Pollard MG, Travers KJ, Weissman JS (1998) Ero1p: a novel and ubiquitous protein with an essential role in oxidative protein folding in the endoplasmic reticulum. Mol Cell 1:171–182

    Article  PubMed  CAS  Google Scholar 

  • Puistola U, Turpeenniemi-Hujanen TM, Myllylä R, Kivirikko KI (1980) Studies on the lysyl hydroxylase reaction. I. Initial velocity kinetics and related aspects. Biochim Biophys Acta 611:40–50

    Article  PubMed  CAS  Google Scholar 

  • Ramming T, Appenzeller-Herzog C (2012) The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more. Antioxid Redox Signal 16:1109–1118

    Article  PubMed  CAS  Google Scholar 

  • Ruotsalainen H, Sipilä L, Vapola M, Sormunen R, Salo AM, Uitto L, Mercer DK, Robins SP, Risteli M, Aszodi A, Fässler R, Myllylä R (2006) Glycosylation catalyzed by lysyl hydroxylase 3 is essential for basement membranes. Journal Cell Sci 119:625–35

    Article  CAS  Google Scholar 

  • Saaranen MJ, Karala A-R, Lappi A-K, Ruddock LW (2010) The role of dehydroascorbate in disulfide bond formation. Antioxid Redox Signal 12:15–25

    Article  PubMed  CAS  Google Scholar 

  • Salo AM, Cox H, Farndon P, Moss C, Grindulis H, Risteli M, Robins SP, Myllylä R (2008) A connective tissue disorder caused by mutations of the lysyl hydroxylase 3 gene. Am J Hum Genet 83:495–503

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sevier CS, Kaiser CA (2008) Ero1 and redox homeostasis in the endoplasmic reticulum. Biochim Biophys Acta 1783:549–556

    Article  PubMed  CAS  Google Scholar 

  • Szarka A, Bánhegyi G (2011) Oxidative folding: recent developments. BioMol Concepts 2:379–390

    Article  CAS  Google Scholar 

  • Szarka A, Stadler K, Jenei V, Margittai É, Csala M, Jakus J, Mandl J, Bánhegyi G (2002) Ascorbyl free radical and dehydroascorbate formation in rat liver endoplasmic reticulum. J Bioenerg Biomembr 34:317–323

    Article  PubMed  CAS  Google Scholar 

  • Tavender TJ, Sheppard AM, Bulleid NJ (2008) Peroxiredoxin IV is an endoplasmic reticulum-localized enzyme forming oligomeric complexes in human cells. Biochem J 411:191–199

    Article  PubMed  CAS  Google Scholar 

  • Tu BP, Weissman JS (2002) The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell 10:983–994

    Article  PubMed  CAS  Google Scholar 

  • Turpeenniemi-Hujanen TM, Puistola U, Kivirikko KI (1980) Isolation of lysyl hydroxylase, an enzyme of collagen synthesis, from chick embryos as a homogeneous protein. Biochem J 189:247–53

    PubMed Central  PubMed  CAS  Google Scholar 

  • Venetainer P, Straub FB (1963) The enzymic reactivation of reduced ribonuclease. Biochim Biophys Acta 67:166–168

    Article  Google Scholar 

  • Venetainer P, Straub FB (1964) The mechanism of action of the ribonuclease-reactivating enzyme. Biochim Biophys Acta 89:189–190

    Google Scholar 

  • Wang L, Zhang L, Niu Y, Sitia R, Wang CC (2013) Glutathione peroxidase 7 utilizes hydrogen peroxide generated by Ero1α to promote oxidative protein folding. Antioxid Redox Signal. doi:10.1089/ars.2013.5236

    Google Scholar 

  • Wang X, Wang L, Sun F, Wang CC (2012) Structural insights into the peroxidase activity and inactivation of human peroxiredoxin 4. Biochem J 441:113–118

    Article  PubMed  CAS  Google Scholar 

  • Wells WW, Xu DP, Yang Y, Rocque PA (1990) Mammalian thioltransferase (glutaredoxin) and protein disulfide isomerase have dehydroascorbate reductase activity. J Biol Chem 265:15361–15364

    PubMed  CAS  Google Scholar 

  • White FH (1960) Regeneration of enzymatic activity by air-oxidation of reduced ribonuclease with observations on thiolation during reduction with thioglycolate. J Biol Chem 235:383–389

    PubMed  CAS  Google Scholar 

  • White FH, Anfinsen CB (1959) Some relationships of structure to function in ribonuclease. Ann N Y Acad Sci 81:515–23

    Article  PubMed  CAS  Google Scholar 

  • Zito E (2013) PRDX4, an endoplasmic reticulum-localized peroxiredoxin at the crossroads between enzymatic oxidative protein folding and nonenzymatic protein oxidation. Antioxid Redox Signal 18:1666–1674

    Article  PubMed  CAS  Google Scholar 

  • Zito E, Chin KT, Blais J, Harding HP, Ron D (2010) ERO1-β, a pancreas-specific disulfide oxidase promotes insulin biogenesis and glucose homeostasis. J Cell Biol 188:821–832

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zito E, Gram Hansen H, Yeo GSH, Fujii J, Ron D (2012) Endoplasmic reticulum thiol oxidase deficiency leads to ascorbic acid depletion and noncanonical scurvy in mice. Mol Cell 48(1):39–51

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a grant from the National Scientific Research Fund (OTKA 105416).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to András Szarka.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szarka, A., Lőrincz, T. The role of ascorbate in protein folding. Protoplasma 251, 489–497 (2014). https://doi.org/10.1007/s00709-013-0560-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-013-0560-5

Keywords

Navigation