Skip to main content
Log in

Retrograde vesicle transport in the Golgi

  • Review Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The Golgi apparatus is the central sorting and biosynthesis hub of the secretory pathway, and uses vesicle transport for the recycling of its resident enzymes. This system must operate with high fidelity and efficiency for the correct modification of secretory glycoconjugates. In this review, we discuss recent advances on how coats, tethers, Rabs and SNAREs cooperate at the Golgi to achieve vesicle transport. We cover the well understood vesicle formation process orchestrated by the COPI coat, and the comprehensively documented fusion process governed by a set of Golgi localised SNAREs. Much less clear are the steps in-between formation and fusion of vesicles, and we therefore provide a much needed update of the latest findings about vesicle tethering. The interplay between Rab GTPases, golgin family coiled-coil tethers and the conserved oligomeric Golgi (COG) complex at the Golgi are thoroughly evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilera-Romero A, Kaminska J, Spang A, Riezman H, Muniz M (2008) The yeast p24 complex is required for the formation of COPI retrograde transport vesicles from the Golgi apparatus. J Cell Biol 180(4):713–720

    Article  CAS  PubMed  Google Scholar 

  • Ali BR, Wasmeier C, Lamoreux L, Strom M, Seabra MC (2004) Multiple regions contribute to membrane targeting of Rab GTPases. J Cell Sci 117(Pt 26):6401–6412

    Article  CAS  PubMed  Google Scholar 

  • Altan-Bonnet N, Sougrat R, Lippincott-Schwartz J (2004) Molecular basis for Golgi maintenance and biogenesis. Curr Opin Cell Biol 16(4):364–372

    Article  CAS  PubMed  Google Scholar 

  • Amessou M, Fradagrada A, Falguieres T, Lord JM, Smith DC, Roberts LM, Lamaze C, Johannes L (2007) Syntaxin 16 and syntaxin 5 are required for efficient retrograde transport of several exogenous and endogenous cargo proteins. J Cell Sci 120(Pt 8):1457–1468

    Article  CAS  PubMed  Google Scholar 

  • An Y, Chen CY, Moyer B, Rotkiewicz P, Elsliger MA, Godzik A, Wilson IA, Balch WE (2009) Structural and functional analysis of the globular head domain of p115 provides insight into membrane tethering. J Mol Biol 391(1):26–41

    Article  CAS  PubMed  Google Scholar 

  • Aoe T, Cukierman E, Lee A, Cassel D, Peters PJ, Hsu VW (1997) The KDEL receptor, ERD2, regulates intracellular traffic by recruiting a GTPase-activating protein for ARF1. EMBO J 16(24):7305–7316

    Article  CAS  PubMed  Google Scholar 

  • Asp L, Kartberg F, Fernandez-Rodriguez J, Smedh M, Elsner M, Laporte F, Barcena M, Jansen KA, Valentijn JA, Koster AJ, Bergeron JJ, Nilsson T (2009) Early stages of Golgi vesicle and tubule formation require diacylglycerol. Mol Biol Cell 20(3):780–790

    Article  CAS  PubMed  Google Scholar 

  • Barr FA (2009) Rab GTPase function in Golgi trafficking. Semin Cell Dev Biol 20(7):780–783

    Article  CAS  PubMed  Google Scholar 

  • Barr F, Lambright DG (2010) Rab GEFs and GAPs. Curr Opin Cell Biol 22(4):461–470

    Article  CAS  PubMed  Google Scholar 

  • Beck R, Adolf F, Weimer C, Bruegger B, Wieland FT (2009) ArfGAP1 activity and COPI vesicle biogenesis. Traffic 10(3):307–315

    Article  CAS  PubMed  Google Scholar 

  • Bonifacino JS, Glick BS (2004) The mechanisms of vesicle budding and fusion. Cell 116(2):153–166

    Article  CAS  PubMed  Google Scholar 

  • Bonifacino JS, Lippincott-Schwartz J (2003) Coat proteins: shaping membrane transport. Nat Rev Mol Cell Biol 4(5):409–414

    Article  CAS  PubMed  Google Scholar 

  • Brandon E, Szul T, Alvarez C, Grabski R, Benjamin R, Kawai R, Sztul E (2006) On and off membrane dynamics of the endoplasmic reticulum-golgi tethering factor p115 in vivo. Mol Biol Cell 17(7):2996–3008

    Article  CAS  PubMed  Google Scholar 

  • Bremser M, Nickel W, Schweikert M, Ravazzola M, Amherdt M, Hughes CA, Sollner TH, Rothman JE, Wieland FT (1999) Coupling of coat assembly and vesicle budding to packaging of putative cargo receptors. Cell 96(4):495–506

    Article  CAS  PubMed  Google Scholar 

  • Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12(5):671–682

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Chin HF, Lazarova D, Menon S, Fu C, Cai H, Sclafani A, Rodgers DW, De La Cruz EM, Ferro-Novick S, Reinisch KM (2008) The structural basis for activation of the Rab Ypt1p by the TRAPP membrane-tethering complexes. Cell 133(7):1202–1213

    Article  CAS  PubMed  Google Scholar 

  • Carr CM, Rizo J (2010) At the junction of SNARE and SM protein function. Curr Opin Cell Biol 22(4):488–495

    Article  CAS  PubMed  Google Scholar 

  • Chavrier P, Vingron M, Sander C, Simons K, Zerial M (1990) Molecular cloning of YPT1/SEC4-related cDNAs from an epithelial cell line. Mol Cell Biol 10(12):6578–6585

    CAS  PubMed  Google Scholar 

  • Chin HF, Cai Y, Menon S, Ferro-Novick S, Reinisch KM, De La Cruz EM (2009) Kinetic analysis of the guanine nucleotide exchange activity of TRAPP, a multimeric Ypt1p exchange factor. J Mol Biol 389(2):275–288

    Article  CAS  PubMed  Google Scholar 

  • Claude A, Zhao BP, Kuziemsky CE, Dahan S, Berger SJ, Yan JP, Armold AD, Sullivan EM, Melancon P (1999) GBF1: a novel Golgi-associated BFA-resistant guanine nucleotide exchange factor that displays specificity for ADP-ribosylation factor 5. J Cell Biol 146(1):71–84

    Article  CAS  PubMed  Google Scholar 

  • Dejgaard SY, Murshid A, Erman A, Kizilay O, Verbich D, Lodge R, Dejgaard K, Ly-Hartig TB, Pepperkok R, Simpson JC, Presley JF (2008) Rab18 and Rab43 have key roles in ER-Golgi trafficking. J Cell Sci 121(Pt 16):2768–2781

    Article  CAS  PubMed  Google Scholar 

  • Diao A, Rahman D, Pappin DJ, Lucocq J, Lowe M (2003) The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. J Cell Biol 160(2):201–212

    Article  CAS  PubMed  Google Scholar 

  • Diao A, Frost L, Morohashi Y, Lowe M (2008) Coordination of golgin tethering and SNARE assembly: GM130 binds syntaxin 5 in a p115-regulated manner. J Biol Chem 283(11):6957–6967

    Article  CAS  PubMed  Google Scholar 

  • Dirac-Svejstrup AB, Sumizawa T, Pfeffer SR (1997) Identification of a GDI displacement factor that releases endosomal Rab GTPases from Rab-GDI. EMBO J 16(3):465–472

    Article  CAS  PubMed  Google Scholar 

  • Dominguez M, Dejgaard K, Fullekrug J, Dahan S, Fazel A, Paccaud JP, Thomas DY, Bergeron JJ, Nilsson T (1998) gp25L/emp24/p24 protein family members of the cis-Golgi network bind both COP I and II coatomer. J Cell Biol 140(4):751–765

    Article  CAS  PubMed  Google Scholar 

  • Donaldson JG, Finazzi D, Klausner RD (1992) Brefeldin A inhibits Golgi membrane-catalysed exchange of guanine nucleotide onto ARF protein. Nature 360(6402):350–352

    Article  CAS  PubMed  Google Scholar 

  • Dong C, Wu G (2007) Regulation of anterograde transport of adrenergic and angiotensin II receptors by Rab2 and Rab6 GTPases. Cell Signal 19(11):2388–2399

    Article  CAS  PubMed  Google Scholar 

  • D’Souza-Schorey C, Chavrier P (2006) ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 7(5):347–358

    Article  PubMed  CAS  Google Scholar 

  • Duden R, Griffiths G, Frank R, Argos P, Kreis TE (1991) Beta-COP, a 110 kD protein associated with non-clathrin-coated vesicles and the Golgi complex, shows homology to beta-adaptin. Cell 64(3):649–665

    Article  CAS  PubMed  Google Scholar 

  • Dulubova I, Yamaguchi T, Arac D, Li H, Huryeva I, Min SW, Rizo J, Sudhof TC (2003) Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins. Proc Natl Acad Sci U S A 100(1):32–37

    Article  CAS  PubMed  Google Scholar 

  • Elsner M, Hashimoto H, Nilsson T (2003) Cisternal maturation and vesicle transport: join the band wagon! (Review). Mol Membr Biol 20(3):221–229

    Article  CAS  PubMed  Google Scholar 

  • Emr S, Glick BS, Linstedt AD, Lippincott-Schwartz J, Luini A, Malhotra V, Marsh BJ, Nakano A, Pfeffer SR, Rabouille C, Rothman JE, Warren G, Wieland FT (2009) Journeys through the Golgi - taking stock in a new era. J Cell Biol 187(4):449–453

    Google Scholar 

  • Eugster A, Frigerio G, Dale M, Duden R (2000) COP I domains required for coatomer integrity, and novel interactions with ARF and ARF-GAP. EMBO J 19(15):3905–3917

    Article  CAS  PubMed  Google Scholar 

  • Farquhar MG, Palade GE (1998) The Golgi apparatus: 100 years of progress and controversy. Trends Cell Biol 8(1):2–10

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Ulibarri I, Vilella M, Lazaro-Dieguez F, Sarri E, Martinez SE, Jimenez N, Claro E, Merida I, Burger KN, Egea G (2007) Diacylglycerol is required for the formation of COPI vesicles in the Golgi-to-ER transport pathway. Mol Biol Cell 18(9):3250–3263

    Article  CAS  PubMed  Google Scholar 

  • Fiedler K, Veit M, Stamnes MA, Rothman JE (1996) Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science 273(5280):1396–1399

    Article  CAS  PubMed  Google Scholar 

  • Foulquier F (2009) COG defects, birth and rise! Biochim Biophys Acta 1792(9):896–902

    Article  CAS  PubMed  Google Scholar 

  • Foulquier F, Ungar D, Reynders E, Zeevaert R, Mills P, Garcia-Silva MT, Briones P, Winchester B, Morelle W, Krieger M, Annaert W, Matthijs G (2007) A new inborn error of glycosylation due to a Cog8 deficiency reveals a critical role for the Cog1–Cog8 interaction in COG complex formation. Hum Mol Genet 16(7):717–730

    Article  CAS  PubMed  Google Scholar 

  • Fridmann-Sirkis Y, Siniossoglou S, Pelham HR (2004) TMF is a golgin that binds Rab6 and influences Golgi morphology. BMC Cell Biol 5:18

    Article  PubMed  Google Scholar 

  • Fukuda M, Kanno E, Ishibashi K, Itoh T (2008) Large scale screening for novel rab effectors reveals unexpected broad Rab binding specificity. Mol Cell Proteomics 7(6):1031–1042

    Article  CAS  PubMed  Google Scholar 

  • Gillingham AK, Pfeifer AC, Munro S (2002) CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin. Mol Biol Cell 13(11):3761–3774

    Article  CAS  PubMed  Google Scholar 

  • Girod A, Storrie B, Simpson JC, Johannes L, Goud B, Roberts LM, Lord JM, Nilsson T, Pepperkok R (1999) Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Nat Cell Biol 1(7):423–430

    Article  CAS  PubMed  Google Scholar 

  • Gommel DU, Memon AR, Heiss A, Lottspeich F, Pfannstiel J, Lechner J, Reinhard C, Helms JB, Nickel W, Wieland FT (2001) Recruitment to Golgi membranes of ADP-ribosylation factor 1 is mediated by the cytoplasmic domain of p23. EMBO J 20(23):6751–6760

    Article  CAS  PubMed  Google Scholar 

  • Griffiths G, Simons K (1986) The trans Golgi network: sorting at the exit site of the Golgi complex. Science 234(4775):438–443

    Article  CAS  PubMed  Google Scholar 

  • Griffiths G, Pepperkok R, Locker JK, Kreis TE (1995) Immunocytochemical localization of beta-COP to the ER-Golgi boundary and the TGN. J Cell Sci 10(Pt 8):2839–2856

    Google Scholar 

  • Grigliatti TA, Hall L, Rosenbluth R, Suzuki DT (1973) Temperature-sensitive mutations in Drosophila melanogaster: XIV. A selection of immobile adults. Mol Gen Genet 120(2):107–114

    Article  CAS  PubMed  Google Scholar 

  • Grosshans BL, Ortiz D, Novick P (2006) Rabs and their effectors: achieving specificity in membrane traffic. Proc Natl Acad Sci U S A 103(32):11821–11827

    Article  CAS  PubMed  Google Scholar 

  • Gu F, Crump CM, Thomas G (2001) Trans-Golgi network sorting. Cell Mol Life Sci 58(8):1067–1084

    Article  CAS  PubMed  Google Scholar 

  • Haas AK, Yoshimura S, Stephens DJ, Preisinger C, Fuchs E, Barr FA (2007) Analysis of GTPase-activating proteins: Rab1 and Rab43 are key Rabs required to maintain a functional Golgi complex in human cells. J Cell Sci 120(Pt 17):2997–3010

    Article  CAS  PubMed  Google Scholar 

  • Hammer JA 3rd, Wu XS (2002) Rabs grab motors: defining the connections between Rab GTPases and motor proteins. Curr Opin Cell Biol 14(1):69–75

    Article  CAS  PubMed  Google Scholar 

  • Hara-Kuge S, Kuge O, Orci L, Amherdt M, Ravazzola M, Wieland FT, Rothman JE (1994) En bloc incorporation of coatomer subunits during the assembly of COP-coated vesicles. J Cell Biol 124(6):883–892

    Article  CAS  PubMed  Google Scholar 

  • Hata Y, Slaughter CA, Sudhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366(6453):347–351

    Article  CAS  PubMed  Google Scholar 

  • Hauri HP, Kappeler F, Andersson H, Appenzeller C (2000) ERGIC-53 and traffic in the secretory pathway. J Cell Sci 113(Pt 4):587–596

    CAS  PubMed  Google Scholar 

  • Helms JB, Rothman JE (1992) Inhibition by brefeldin A of a Golgi membrane enzyme that catalyses exchange of guanine nucleotide bound to ARF. Nature 360(6402):352–354

    Article  CAS  PubMed  Google Scholar 

  • Helms JB, Palmer DJ, Rothman JE (1993) Two distinct populations of ARF bound to Golgi membranes. J Cell Biol 121(4):751–760

    Article  CAS  PubMed  Google Scholar 

  • Jackson MR, Nilsson T, Peterson PA (1990) Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9(10):3153–3162

    CAS  PubMed  Google Scholar 

  • Jiang S, Storrie B (2005) Cisternal rab proteins regulate Golgi apparatus redistribution in response to hypotonic stress. Mol Biol Cell 16(5):2586–2596

    Article  CAS  PubMed  Google Scholar 

  • Kingsley DM, Kozarsky KF, Segal M, Krieger M (1986) Three types of low density lipoprotein receptor-deficient mutant have pleiotropic defects in the synthesis of N-linked, O-linked, and lipid-linked carbohydrate chains. J Cell Biol 102(5):1576–1585

    Article  CAS  PubMed  Google Scholar 

  • Kosaka T, Ikeda K (1983) Reversible blockage of membrane retrieval and endocytosis in the garland cell of the temperature-sensitive mutant of Drosophila melanogaster, shibirets1. J Cell Biol 97(2):499–507

    Article  CAS  PubMed  Google Scholar 

  • Koumandou VL, Dacks JB, Coulson RM, Field MC (2007) Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol 7:29

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Sano M, Goda S, Suzuki N, Nishiwaki K (2006) The conserved oligomeric Golgi complex acts in organ morphogenesis via glycosylation of an ADAM protease in C. elegans. Development 133(2):263–273

    Article  CAS  PubMed  Google Scholar 

  • Lanoix J, Ouwendijk J, Lin CC, Stark A, Love HD, Ostermann J, Nilsson T (1999) GTP hydrolysis by arf-1 mediates sorting and concentration of Golgi resident enzymes into functional COP I vesicles. EMBO J 18(18):4935–4948

    Article  CAS  PubMed  Google Scholar 

  • Laufman O, Kedan A, Hong W, Lev S (2009) Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing. EMBO J 28(14):2006–2017

    Article  CAS  PubMed  Google Scholar 

  • Laufman O, Hong W, Lev S (2011) The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport. J Cell Biol 194(3):459–472

    Article  CAS  PubMed  Google Scholar 

  • Lee MC, Miller EA, Goldberg J, Orci L, Schekman R (2004) Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol 20:87–123

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Yang JS, Hong W, Premont RT, Hsu VW (2005) ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. J Cell Biol 168(2):281–290

    Article  CAS  PubMed  Google Scholar 

  • Linstedt AD, Jesch SA, Mehta A, Lee TH, Garcia-Mata R, Nelson DS, Sztul E (2000) Binding relationships of membrane tethering components. The giantin N terminus and the GM130 N terminus compete for binding to the p115 C terminus. J Biol Chem 275(14):10196–10201

    Article  CAS  PubMed  Google Scholar 

  • Lippincott-Schwartz J, Liu W (2006) Insights into COPI coat assembly and function in living cells. Trends Cell Biol 16(10):e1–e4

    Article  CAS  PubMed  Google Scholar 

  • Lis H, Sharon N (1993) Protein glycosylation. Structural and functional aspects Eur J Biochem 218(1):1–27

    CAS  Google Scholar 

  • Liu Y, Kahn RA, Prestegard JH (2009) Structure and membrane interaction of myristoylated ARF1. Structure 17(1):79–87

    Article  CAS  PubMed  Google Scholar 

  • Luo R, Ha VL, Hayashi R, Randazzo PA (2009) Arf GAP2 is positively regulated by coatomer and cargo. Cell Signal 21(7):1169–1179

    Article  CAS  PubMed  Google Scholar 

  • Maekawa M, Inoue T, Kobuna H, Nishimura T, Gengyo-Ando K, Mitani S, Arai H (2009) Functional analysis of GS28, an intra-Golgi SNARE, in Caenorhabditis elegans. Genes Cells 14(8):1003–1013

    Article  CAS  PubMed  Google Scholar 

  • Majoul I, Straub M, Hell SW, Duden R, Soling HD (2001) KDEL-cargo regulates interactions between proteins involved in COPI vesicle traffic: measurements in living cells using FRET. Dev Cell 1(1):139–153

    Article  CAS  PubMed  Google Scholar 

  • Malsam J, Sollner TH (2011) Organization of SNAREs within the Golgi Stack. Cold Spring Harb Perspect Biol 3(10):a005249

    Google Scholar 

  • Malsam J, Satoh A, Pelletier L, Warren G (2005) Golgin tethers define subpopulations of COPI vesicles. Science 307(5712):1095–1098

    Article  CAS  PubMed  Google Scholar 

  • Manneville JB, Casella JF, Ambroggio E, Gounon P, Bertherat J, Bassereau P, Cartaud J, Antonny B, Goud B (2008) COPI coat assembly occurs on liquid-disordered domains and the associated membrane deformations are limited by membrane tension. Proc Natl Acad Sci U S A 105(44):16946–16951

    Article  CAS  PubMed  Google Scholar 

  • Martinez O, Schmidt A, Salamero J, Hoflack B, Roa M, Goud B (1994) The small GTP-binding protein rab6 functions in intra-Golgi transport. J Cell Biol 127(6 Pt 1):1575–1588

    Article  CAS  PubMed  Google Scholar 

  • Martinez O, Antony C, Pehau-Arnaudet G, Berger EG, Salamero J, Goud B (1997) GTP-bound forms of rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc Natl Acad Sci U S A 94(5):1828–1833

    Article  CAS  PubMed  Google Scholar 

  • Matanis T, Akhmanova A, Wulf P, Del Nery E, Weide T, Stepanova T, Galjart N, Grosveld F, Goud B, De Zeeuw CI, Barnekow A, Hoogenraad CC (2002) Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein-dynactin motor complex. Nat Cell Biol 4(12):986–992

    Article  CAS  PubMed  Google Scholar 

  • McMahon HT, Mills IG (2004) COP and clathrin-coated vesicle budding: different pathways, common approaches. Curr Opin Cell Biol 16(4):379–391

    Article  CAS  PubMed  Google Scholar 

  • Miserey-Lenkei S, Chalancon G, Bardin S, Formstecher E, Goud B, Echard A (2010) Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat Cell Biol 12(7):645–654

    Article  CAS  PubMed  Google Scholar 

  • Moelleken J, Malsam J, Betts MJ, Movafeghi A, Reckmann I, Meissner I, Hellwig A, Russell RB, Sollner T, Brugger B, Wieland FT (2007) Differential localization of coatomer complex isoforms within the Golgi apparatus. Proc Natl Acad Sci U S A 104(11):4425–4430

    Article  CAS  PubMed  Google Scholar 

  • Munro S (1995) An investigation of the role of transmembrane domains in Golgi protein retention. EMBO J 14(19):4695–4704

    CAS  PubMed  Google Scholar 

  • Munro S, Pelham HR (1987) A C-terminal signal prevents secretion of luminal ER proteins. Cell 48(5):899–907

    Article  CAS  PubMed  Google Scholar 

  • Nickel W, Sohn K, Bunning C, Wieland FT (1997) p23, a major COPI-vesicle membrane protein, constitutively cycles through the early secretory pathway. Proc Natl Acad Sci U S A 94(21):11393–11398

    Article  CAS  PubMed  Google Scholar 

  • Niu TK, Pfeifer AC, Lippincott-Schwartz J, Jackson CL (2005) Dynamics of GBF1, a Brefeldin A-sensitive Arf1 exchange factor at the Golgi. Mol Biol Cell 16(3):1213–1222

    Article  CAS  PubMed  Google Scholar 

  • Nottingham RM, Pfeffer SR (2009) Defining the boundaries: Rab GEFs and GAPs. Proc Natl Acad Sci U S A 106(34):14185–14186

    Article  CAS  PubMed  Google Scholar 

  • Nuoffer C, Davidson HW, Matteson J, Meinkoth J, Balch WE (1994) A GDP-bound of rab1 inhibits protein export from the endoplasmic reticulum and transport between Golgi compartments. J Cell Biol 125(2):225–237

    Article  CAS  PubMed  Google Scholar 

  • Opat AS, van Vliet C, Gleeson PA (2001) Trafficking and localisation of resident Golgi glycosylation enzymes. Biochimie 83(8):763–773

    Article  CAS  PubMed  Google Scholar 

  • Orci L, Tagaya M, Amherdt M, Perrelet A, Donaldson JG, Lippincott-Schwartz J, Klausner RD, Rothman JE (1991) Brefeldin A, a drug that blocks secretion, prevents the assembly of non-clathrin-coated buds on Golgi cisternae. Cell 64(6):1183–1195

    Article  CAS  PubMed  Google Scholar 

  • Orci L, Stamnes M, Ravazzola M, Amherdt M, Perrelet A, Sollner TH, Rothman JE (1997) Bidirectional transport by distinct populations of COPI-coated vesicles. Cell 90(2):335–349

    Article  CAS  PubMed  Google Scholar 

  • Palade G (1975) Intracellular aspects of the process of protein synthesis. Science 189(4200):347–358

    Article  CAS  PubMed  Google Scholar 

  • Parlati F, McNew JA, Fukuda R, Miller R, Sollner TH, Rothman JE (2000) Topological restriction of SNARE-dependent membrane fusion. Nature 407(6801):194–198

    Article  CAS  PubMed  Google Scholar 

  • Patterson GH, Hirschberg K, Polishchuk RS, Gerlich D, Phair RD, Lippincott-Schwartz J (2008) Transport through the Golgi apparatus by rapid partitioning within a two-phase membrane system. Cell 133(6):1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Pearse BM (1975) Coated vesicles from pig brain: purification and biochemical characterization. J Mol Biol 97(1):93–98

    Article  CAS  PubMed  Google Scholar 

  • Pelham HR, Rothman JE (2000) The debate about transport in the Golgi–two sides of the same coin? Cell 102(6):713–719

    Article  CAS  PubMed  Google Scholar 

  • Peng R, Gallwitz D (2002) Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes. J Cell Biol 157(4):645–655

    Article  CAS  PubMed  Google Scholar 

  • Pepperkok R, Whitney JA, Gomez M, Kreis TE (2000) COPI vesicles accumulating in the presence of a GTP restricted arf1 mutant are depleted of anterograde and retrograde cargo. J Cell Sci 113(Pt 1):135–144

    CAS  PubMed  Google Scholar 

  • Peyroche A, Antonny B, Robineau S, Acker J, Cherfils J, Jackson CL (1999) Brefeldin A acts to stabilize an abortive ARF–GDP–Sec7 domain protein complex: involvement of specific residues of the Sec7 domain. Mol Cell 3(3):275–285

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer SR (2010) How the Golgi works: a cisternal progenitor model. Proc Natl Acad Sci U S A 107(46):19614–19618

    Article  CAS  PubMed  Google Scholar 

  • Puthenveedu MA, Linstedt AD (2004) Gene replacement reveals that p115/SNARE interactions are essential for Golgi biogenesis. Proc Natl Acad Sci U S A 101(5):1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Rabouille C, Klumperman J (2005) Opinion: the maturing role of COPI vesicles in intra-Golgi transport. Nat Rev Mol Cell Biol 6(10):812–817

    Article  CAS  PubMed  Google Scholar 

  • Ram RJ, Li B, Kaiser CA (2002) Identification of Sec36p, Sec37p, and Sec38p: components of yeast complex that contains Sec34p and Sec35p. Mol Biol Cell 13(5):1484–1500

    Article  CAS  PubMed  Google Scholar 

  • Ramirez IB, Lowe M (2009) Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 20(7):770–779

    Article  PubMed  CAS  Google Scholar 

  • Rivera-Molina FE, Novick PJ (2009) A Rab GAP cascade defines the boundary between two Rab GTPases on the secretory pathway. Proc Natl Acad Sci U S A 106(34):14408–14413

    Article  CAS  PubMed  Google Scholar 

  • Rosing M, Ossendorf E, Rak A, Barnekow A (2007) Giantin interacts with both the small GTPase Rab6 and Rab1. Exp Cell Res 313(11):2318–2325

    Article  CAS  PubMed  Google Scholar 

  • Roth TF, Porter KR (1964) Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J Cell Biol 20:313–332

    Article  CAS  PubMed  Google Scholar 

  • Rothman JE (1994) Mechanisms of intracellular protein transport. Nature 372(6501):55–63

    Article  CAS  PubMed  Google Scholar 

  • Sapperstein SK, Walter DM, Grosvenor AR, Heuser JE, Waters MG (1995) p115 is a general vesicular transport factor related to the yeast endoplasmic reticulum to Golgi transport factor Uso1p. Proc Natl Acad Sci U S A 92(2):522–526

    Article  CAS  PubMed  Google Scholar 

  • Satoh A, Wang Y, Malsam J, Beard MB, Warren G (2003) Golgin-84 is a rab1 binding partner involved in Golgi structure. Traffic 4(3):153–161

    Article  CAS  PubMed  Google Scholar 

  • Schledzewski K, Brinkmann H, Mendel RR (1999) Phylogenetic analysis of components of the eukaryotic vesicle transport system reveals a common origin of adaptor protein complexes 1, 2, and 3 and the F subcomplex of the coatomer COPI. J Mol Evol 48(6):770–778

    Article  CAS  PubMed  Google Scholar 

  • Schmitz KR, Liu J, Li S, Setty TG, Wood CS, Burd CG, Ferguson KM (2008) Golgi localization of glycosyltransferases requires a Vps74p oligomer. Dev Cell 14(4):523–534

    Article  CAS  PubMed  Google Scholar 

  • Semenza JC, Hardwick KG, Dean N, Pelham HR (1990) ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61(7):1349–1357

    Article  CAS  PubMed  Google Scholar 

  • Shestakova A, Zolov S, Lupashin V (2006) COG complex-mediated recycling of Golgi glycosyltransferases is essential for normal protein glycosylation. Traffic 7(2):191–204

    Article  CAS  PubMed  Google Scholar 

  • Shestakova A, Suvorova E, Pavliv O, Khaidakova G, Lupashin V (2007) Interaction of the conserved oligomeric Golgi complex with t-SNARE Syntaxin5a/Sed5 enhances intra-Golgi SNARE complex stability. J Cell Biol 179(6):1179–1192

    Article  CAS  PubMed  Google Scholar 

  • Short B, Preisinger C, Korner R, Kopajtich R, Byron O, Barr FA (2001) A GRASP55–rab2 effector complex linking Golgi structure to membrane traffic. J Cell Biol 155(6):877–883

    Article  CAS  PubMed  Google Scholar 

  • Short B, Preisinger C, Schaletzky J, Kopajtich R, Barr FA (2002) The Rab6 GTPase regulates recruitment of the dynactin complex to Golgi membranes. Curr Biol 12(20):1792–1795

    Article  CAS  PubMed  Google Scholar 

  • Shorter J, Beard MB, Seemann J, Dirac-Svejstrup AB, Warren G (2002) Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J Cell Biol 157(1):45–62

    Article  CAS  PubMed  Google Scholar 

  • Sinka R, Gillingham AK, Kondylis V, Munro S (2008) Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins. J Cell Biol 183(4):607–615

    Article  CAS  PubMed  Google Scholar 

  • Smith RD, Willett R, Kudlyk T, Pokrovskaya I, Paton AW, Paton JC, Lupashin VV (2009) The COG complex, Rab6 and COPI define a novel Golgi retrograde trafficking pathway that is exploited by SubAB toxin. Traffic 10(10):1502–1517

    Article  CAS  PubMed  Google Scholar 

  • Sohda M, Misumi Y, Yoshimura S, Nakamura N, Fusano T, Ogata S, Sakisaka S, Ikehara Y (2007) The interaction of two tethering factors, p115 and COG complex, is required for Golgi integrity. Traffic 8(3):270–284

    Article  CAS  PubMed  Google Scholar 

  • Sohda M, Misumi Y, Yamamoto A, Nakamura N, Ogata S, Sakisaka S, Hirose S, Ikehara Y, Oda K (2010) Interaction of golgin-84 with the conserved oligomeric Golgi (COG) complex mediates the intra-Golgi retrograde transport. Traffic

  • Sohn K, Orci L, Ravazzola M, Amherdt M, Bremser M, Lottspeich F, Fiedler K, Helms JB, Wieland FT (1996) A major transmembrane protein of Golgi-derived COPI-coated vesicles involved in coatomer binding. J Cell Biol 135(5):1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Sonnichsen B, Lowe M, Levine T, Jamsa E, Dirac-Svejstrup B, Warren G (1998) A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol 140(5):1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Starr T, Sun Y, Wilkins N, Storrie B (2010) Rab33b and Rab6 are functionally overlapping regulators of Golgi homeostasis and trafficking. Traffic 11(5):626–636

    Article  CAS  PubMed  Google Scholar 

  • Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10(8):513–525

    Article  CAS  PubMed  Google Scholar 

  • Stenmark H, Valencia A, Martinez O, Ullrich O, Goud B, Zerial M (1994) Distinct structural elements of rab5 define its functional specificity. EMBO J 13(3):575–583

    CAS  PubMed  Google Scholar 

  • Sudhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323(5913):474–477

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Shestakova A, Hunt L, Sehgal S, Lupashin V, Storrie B (2007a) Rab6 regulates both ZW10/RINT-1 and conserved oligomeric Golgi complex-dependent Golgi trafficking and homeostasis. Mol Biol Cell 18(10):4129–4142

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Anderl F, Frohlich K, Zhao L, Hanke S, Brugger B, Wieland F, Bethune J (2007b) Multiple and stepwise interactions between coatomer and ADP-ribosylation factor-1 (Arf1)-GTP. Traffic 8(5):582–593

    Article  CAS  PubMed  Google Scholar 

  • Suvorova ES, Duden R, Lupashin VV (2002) The Sec34/Sec35p complex, a Ypt1p effector required for retrograde intra-Golgi trafficking, interacts with Golgi SNAREs and COPI vesicle coat proteins. J Cell Biol 157(4):631–643

    Article  CAS  PubMed  Google Scholar 

  • Sztul E, Lupashin V (2006) Role of tethering factors in secretory membrane traffic. Am J Physiol Cell Physiol 290(1):C11–C26

    Article  CAS  PubMed  Google Scholar 

  • Sztul E, Lupashin V (2009) Role of vesicle tethering factors in the ER–Golgi membrane traffic. FEBS Lett

  • Tanigawa G, Orci L, Amherdt M, Ravazzola M, Helms JB, Rothman JE (1993) Hydrolysis of bound GTP by ARF protein triggers uncoating of Golgi-derived COP-coated vesicles. J Cell Biol 123(6 Pt 1):1365–1371

    Article  CAS  PubMed  Google Scholar 

  • Tisdale EJ, Bourne JR, Khosravi-Far R, Der CJ, Balch WE (1992) GTP-binding mutants of rab1 and rab2 are potent inhibitors of vesicular transport from the endoplasmic reticulum to the Golgi complex. J Cell Biol 119(4):749–761

    Article  CAS  PubMed  Google Scholar 

  • Traub LM, Kornfeld S (1997) The trans-Golgi network: a late secretory sorting station. Curr Opin Cell Biol 9(4):527–533

    Article  CAS  PubMed  Google Scholar 

  • Tu L, Tai WC, Chen L, Banfield DK (2008) Signal-mediated dynamic retention of glycosyltransferases in the Golgi. Science 321(5887):404–407

    Article  CAS  PubMed  Google Scholar 

  • Ungar D (2009) Golgi linked protein glycosylation and associated diseases. Semin Cell Dev Biol 20(7):762–769

    Article  CAS  PubMed  Google Scholar 

  • Ungar D, Oka T, Krieger M, Hughson FM (2006) Retrograde transport on the COG railway. Trends Cell Biol 16(2):113–120

    Article  CAS  PubMed  Google Scholar 

  • Valsdottir R, Hashimoto H, Ashman K, Koda T, Storrie B, Nilsson T (2001) Identification of rabaptin-5, rabex-5, and GM130 as putative effectors of rab33b, a regulator of retrograde traffic between the Golgi apparatus and ER. FEBS Lett 508(2):201–209

    Article  CAS  PubMed  Google Scholar 

  • VanRheenen SM, Cao X, Lupashin VV, Barlowe C, Waters MG (1998) Sec35p, a novel peripheral membrane protein, is required for ER to Golgi vesicle docking. J Cell Biol 141(5):1107–1119

    Article  CAS  PubMed  Google Scholar 

  • Volchuk A, Ravazzola M, Perrelet A, Eng WS, Di Liberto M, Varlamov O, Fukasawa M, Engel T, Sollner TH, Rothman JE, Orci L (2004) Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack. Mol Biol Cell 15(4):1506–1518

    Article  CAS  PubMed  Google Scholar 

  • Warren G, Malhotra V (1998) The organisation of the Golgi apparatus. Curr Opin Cell Biol 10(4):493–498

    Article  CAS  PubMed  Google Scholar 

  • Waters MG, Clary DO, Rothman JE (1992) A novel 115-kD peripheral membrane protein is required for intercisternaltransport in the Golgi stack. J Cell Biol 118(5):1015–1026

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE (1998) SNAREpins: minimal machinery for membrane fusion. Cell 92(6):759–772

    Article  CAS  PubMed  Google Scholar 

  • Wegmann D, Hess P, Baier C, Wieland FT, Reinhard C (2004) Novel isotypic gamma/zeta subunits reveal three coatomer complexes in mammals. Mol Cell Biol 24(3):1070–1080

    Article  CAS  PubMed  Google Scholar 

  • Weimer C, Beck R, Eckert P, Reckmann I, Moelleken J, Brugger B, Wieland F (2008) Differential roles of ArfGAP1, ArfGAP2, and ArfGAP3 in COPI trafficking. J Cell Biol 183(4):725–735

    Article  CAS  PubMed  Google Scholar 

  • Wen W, Yu J, Pan L, Wei Z, Weng J, Wang W, Ong YS, Tran TH, Hong W, Zhang M (2010) Lipid-Induced conformational switch controls fusion activity of longin domain SNARE Ykt6. Mol Cell 37(3):383–395

    Article  CAS  PubMed  Google Scholar 

  • White J, Johannes L, Mallard F, Girod A, Grill S, Reinsch S, Keller P, Tzschaschel B, Echard A, Goud B, Stelzer EH (1999) Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J Cell Biol 147(4):743–760

    Article  CAS  PubMed  Google Scholar 

  • Whyte JR, Munro S (2001) The Sec34/35 Golgi transport complex is related to the exocyst, defining a family of complexes involved in multiple steps of membrane traffic. Dev Cell 1(4):527–537

    Article  CAS  PubMed  Google Scholar 

  • Whyte JRC, Munro S (2002) Vesicle tethering complexes in membrane traffic. J Cell Sci 115(13):2627–2637

    CAS  PubMed  Google Scholar 

  • Wood CS, Schmitz KR, Bessman NJ, Setty TG, Ferguson KM, Burd CG (2009) PtdIns4P recognition by Vps74/GOLPH3 links PtdIns 4-kinase signaling to retrograde Golgi trafficking. J Cell Biol 187(7):967–975

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Steet RA, Bohorov O, Bakker J, Newell J, Krieger M, Spaapen L, Kornfeld S, Freeze HH (2004) Mutation of the COG complex subunit gene COG7 causes a lethal congenital disorder. Nat Med 10(5):518–523

    Article  CAS  PubMed  Google Scholar 

  • Wuestehube LJ, Duden R, Eun A, Hamamoto S, Korn P, Ram R, Schekman R (1996) New mutants of Saccharomyces cerevisiae affected in the transport of proteins from the endoplasmic reticulum to the Golgi complex. Genetics 142(2):393–406

    CAS  PubMed  Google Scholar 

  • Yamane J, Kubo A, Nakayama K, Yuba-Kubo A, Katsuno T, Tsukita S (2007) Functional involvement of TMF/ARA160 in Rab6-dependent retrograde membrane traffic. Exp Cell Res 313(16):3472–3485

    Article  CAS  PubMed  Google Scholar 

  • Yang JS, Lee SY, Gao M, Bourgoin S, Randazzo PA, Premont RT, Hsu VW (2002) ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J Cell Biol 159(1):69–78

    Article  CAS  PubMed  Google Scholar 

  • Yang JS, Lee SY, Spano S, Gad H, Zhang L, Nie Z, Bonazzi M, Corda D, Luini A, Hsu VW (2005) A role for BARS at the fission step of COPI vesicle formation from Golgi membrane. EMBO J 24(23):4133–4143

    Article  CAS  PubMed  Google Scholar 

  • Yang JS, Gad H, Lee SY, Mironov A, Zhang L, Beznoussenko GV, Valente C, Turacchio G, Bonsra AN, Du G, Baldanzi G, Graziani A, Bourgoin S, Frohman MA, Luini A, Hsu VW (2008) A role for phosphatidic acid in COPI vesicle fission yields insights into Golgi maintenance. Nat Cell Biol 10(10):1146–1153

    Article  CAS  PubMed  Google Scholar 

  • Young J, Stauber T, del Nery E, Vernos I, Pepperkok R, Nilsson T (2005) Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A’. Mol Biol Cell 16(1):162–177

    Article  CAS  PubMed  Google Scholar 

  • Yu IM, Hughson FM (2010) Tethering factors as organizers of intracellular vesicular traffic. Annu Rev Cell Dev Biol 26:137–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the BBSRC for a PhD studentship supporting N.P.C. and research grant BB/F006993/1 for D.U.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Ungar.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cottam, N.P., Ungar, D. Retrograde vesicle transport in the Golgi. Protoplasma 249, 943–955 (2012). https://doi.org/10.1007/s00709-011-0361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0361-7

Keywords

Navigation