Skip to main content
Log in

Biological reactivity of TiO2 nanoparticles assessed by ex vivo testing

  • Short Communication
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Isolated digestive gland epithelium from a model invertebrate organism was used in an ex vivo system to assess the potential of nanoparticulate TiO2 to disrupt cell membranes. Primary particle size, surface area, concentration of particles in a suspension, and duration of exposure to TiO2 particles were all found to have effects, which are observed at concentrations of nano-TiO2 as low as 1 μg mL−1. The test system employed here can be used as a fast screening tool to assess biological potential of nanoparticles with similar chemical composition but different size, concentration, or duration of exposure. We discuss the potential of ex vivo tests to avoid some of the limitations of conventional in vitro tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Amezaga-Madrid P, Silveyra-Morales R, Cordoba-Fierro L, Nevarez-Moorillon GV, Miki-Yoshida M, Orrantia-Borunda E, Solis FJ (2003) TEM evidence of ultrastructural alteration on Pseudomonas aeruginosa by photocatalytic TiO2 thin films. J Photoch Photobio 70(1):45–50

    Article  CAS  Google Scholar 

  • Banaszak MMH (2009) Nanotoxicology: a personal perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4):353–359

    Article  Google Scholar 

  • Braydich-Stolle LK, Schaeublin NM, Murdock RC, Jiang J, Biswas P, Schlager JJ, Hussain SM (2009) Crystal structure mediates mode of cell death in TiO2 nanotoxicity. J Nanopart Res 11(6):1361–1374

    Article  CAS  Google Scholar 

  • Ferreira NGC, Santos MJG, Domingues I, Calhoa CF, Monteiro M, Amorim MJB, Soares AMVM, Loureiro S (2010) Basal levels of enzymatic biomarkers and energy reserves in Porcellionides pruinosus. Soil Biol Biochem 42(12):2128–2136. doi:10.1016/j.soilbio.2010.08.008

    Article  CAS  Google Scholar 

  • Frank SA, Nowak MA (2004) Problems of somatic mutation and cancer. Bioessays 26(3):291–299

    Article  PubMed  CAS  Google Scholar 

  • Fujita K, Horie M, Kato H, Endoh S, Suzuki M, Nakamura A, Miyauchi A, Yamamoto K, Kinugasa S, Nishio K, Yoshida Y, Iwahashi H, Nakanishi J (2009) Effects of ultrafine TiO2 particles on gene expression profile in human keratinocytes without illumination: involvement of extracellular matrix and cell adhesion. Toxicol Lett 191(2–3):109–117

    Article  PubMed  CAS  Google Scholar 

  • Graton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JE (2008) The effect of particle design on cellular internalization pathways. P Natl Acad Sci USA 105(33):11613–11618

    Article  Google Scholar 

  • Hartung T, Daston G (2009) Are in vitro tests suitable for regulatory use? Toxicol Sci 111(2):233–237

    Article  PubMed  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316

    Article  PubMed  CAS  Google Scholar 

  • Hussain S, Boland S, Baeza-Squiban A, Hamel R, Thomassen LCJ, Martens JA, Billon-Galland MA, Fleury-Feith J, Moisan F, Pairon JC, Marano F (2009) Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: role of particle surface area and internalized amount. Toxicology 260(1–3):142–149

    Article  PubMed  CAS  Google Scholar 

  • Karlsson HL, Gustafsson J, Cronholm P, Moller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118

    Article  PubMed  CAS  Google Scholar 

  • Lee YS, Yoon S, Yoon HJ, Lee K, Yoon HK, Lee JH, Song CW (2009) Inhibitor of differentiation 1 (Id1) expression attenuates the degree of TiO2-induced cytotoxicity in H1299 non-small cell lung cancer cells. Toxicol Lett 189(3):191–199

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Lee W, Slutsky L, Clark RAF, Pernodet N, Rafailovich MH (2009) Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small 5(4):511–520

    Article  PubMed  CAS  Google Scholar 

  • Park MVDZ, Lankveld DPK, van Loveren H, de Jong WH (2009) The status of in vitro toxicity studies in the risk assessment of nanomaterials. Nanomedicine 4(6):669–685

    Article  PubMed  CAS  Google Scholar 

  • Ponten J (2001) Cell biology of precancer (Reprinted from Cancer Surveys 32, Precancer Biology, Importance and Possible Prevention, 1988). Eur J Cancer 37:S97–S113

    Article  PubMed  CAS  Google Scholar 

  • Poynton HC, Lazorchak JM, Impellitteri CA, Smith ME, Rogers K, Patra M, Hammer KA, Allen HJ, Vulpe CD (2011) Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45(2):762–768. doi:10.1021/Es102501z

    Article  PubMed  CAS  Google Scholar 

  • Regoli F, Nigro M, Orlando E (1998) Lysosomal and antioxidant responses to metals in the Antarctic scallop Adamussium colbecki. Aquat Toxicol 40(4):375–392

    Article  Google Scholar 

  • Sayes CM, Warheit DB (2008) An in vitro investigation of the differential cytotoxic responses of human and rat lung epithelial cell lines using TiO2 nanoparticles. Int J Nanotechnol 5(1):15–29

    Article  CAS  Google Scholar 

  • Sayes CM, Wahi R, Kurian PA, Liu YP, West JL, Ausman KD, Warheit DB, Colvin VL (2006) Correlating nanoscale titania structure with toxicity: A cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 92(1):174–185

    Article  PubMed  CAS  Google Scholar 

  • Simon-Deckers A, Gouget B, Mayne-L'Hermite M, Herlin-Boime N, Reynaud C, Carriere M (2008) In vitro investigation of oxide nanoparticle and carbon nanotube toxicity and intracellular accumulation in A549 human pneumocytes. Toxicology 253(1–3):137–146

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Manshian B, Jenkins GJS, Griffiths SM, Williams PM, Maffeis TGG, Wright CJ, Doak SH (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30(23–24):3891–3914

    Article  PubMed  CAS  Google Scholar 

  • Soto K, Garza KM, Murr LE (2007) Cytotoxic effects of aggregated nanomaterials. Acta Biomater 3(3):351–358

    Article  PubMed  CAS  Google Scholar 

  • Thevenot P, Cho J, Wavhal D, Timmons RB, Tang LP (2008) Surface chemistry influences cancer killing effect of TiO2 nanoparticles. Nanomed-Nanotechnol 4(3):226–236

    Article  CAS  Google Scholar 

  • Valant J, Drobne D, Sepcic K, Jemec A, Kogej K, Kostanjsek R (2009) Hazardous potential of manufactured nanoparticles identified by in vivo assay. J Haz Mat 171(1–3):160–165

    Article  CAS  Google Scholar 

  • Vamanu CI, Cimpan MR, Hol PJ, Sornes S, Lie SA, Gjerdet NR (2008) Induction of cell death by TiO2 nanoparticles: Studies on a human monoblastoid cell line. Toxicol in Vitro 22(7):1689–1696

    Article  PubMed  CAS  Google Scholar 

  • Wang JX, Fan YB, Gao Y, Hu QH, Wang TC (2009) TiO2 nanoparticles translocation and potential toxicological effect in rats after intraarticular injection. Biomaterials 30(27):4590–4600

    Article  PubMed  CAS  Google Scholar 

  • Warheit DB (2008) How meaningful are the results of nanotoxicity studies in the absence of adequate material characterization? Toxicol Sci 101(2):183–185

    Article  PubMed  CAS  Google Scholar 

  • Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev 77(4):455–493

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Slovenian Research Agency (project number J1-9475), Ksenija Kogej and Darko Makovec for nanoparticles characterization, Živa Pipan-Tkalec and Maja Remškar for TEM analyses, and G.W.A. Milne for editorial assistance.

Conflicts of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janez Valant.

Additional information

Handling Editor: Peter Nick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valant, J., Drobne, D. Biological reactivity of TiO2 nanoparticles assessed by ex vivo testing. Protoplasma 249, 835–842 (2012). https://doi.org/10.1007/s00709-011-0298-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0298-x

Keywords

Navigation