Skip to main content

Advertisement

Log in

The formation, function and fate of protein storage compartments in seeds

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Seed storage proteins (SSPs) have been studied for more than 250 years because of their nutritional value and their impact on the use of grain in food processing. More recently, the use of seeds for the production of recombinant proteins has rekindled interest in the behavior of SSPs and the question how they are able to accumulate as stable storage reserves. Seed cells produce vast amounts of SSPs with different subcellular destinations creating an enormous logistic challenge for the endomembrane system. Seed cells contain several different storage organelles including the complex and dynamic protein storage vacuoles (PSVs) and other protein bodies (PBs) derived from the endoplasmic reticulum (ER). Storage proteins destined for the PSV may pass through or bypass the Golgi, using different vesicles that follow different routes through the cell. In addition, trafficking may depend on the plant species, tissue and developmental stage, showing that the endomembrane system is capable of massive reorganization. Some SSPs contain sorting signals or interact with membranes or with other proteins en route in order to reach their destination. The ability of SSPs to form aggregates is particularly important in the formation or ER-derived PBs, a mechanism that occurs naturally in response to overloading with proteins that cannot be transported and that can be used to induce artificial storage bodies in vegetative tissues. In this review, we summarize recent findings that provide insight into the formation, function, and fate of storage organelles and describe tools that can be used to study them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

At-ELP:

Arabidopsis thaliana EGF receptor-like protein

CCV:

Clathrin-coated vesicle

DIP:

Dark intrinsic protein

DV:

Dense vesicle

ER:

Endoplasmic reticulum

ERvt:

ER to vacuole trafficking

GFP:

Green fluorescent protein

GPA1:

G-protein alpha subunit 1

HMW:

High molecular weight

i-ER:

Induced ER (body)

KV:

KDEL-tailed cysteine proteinase-accumulating vesicle

LV:

Lytic vacuole

MBP:

Maltose binding protein

MVB:

Multivesicular body

PAC:

Precursor-accumulating (vesicle)

PB:

ER-derived protein bodies

PCD:

Programmed cell death

PPI:

Peptidyl-prolyl cistrans isomerase

PSV:

Protein storage vacuole

PVC:

Prevacuolar compartment

rER:

Rough endoplasmic reticulum

RMR:

Receptor homology-transmembrane-RING H2

RNAi:

RNA interference

SBP:

Sucrose-binding protein

SH-EP:

Sulfhydryl endopeptidase

SNARE:

Soluble N-ethylmaleimide-sensitive-factor attachment receptor

SSP:

Seed storage protein

TGN:

Trans-Golgi network

TIP:

Tonoplast intrinsic protein

VAMP:

Vesicle associated membrane protein

VSR:

Vacuole sorting receptor

References

  • Abhary M, Siritunga D, Stevens G, Taylor NJ, Fauquet CM (2011) Transgenic biofortification of the starchy staple cassava (Manihot esculenta) generates a novel sink for protein. PLoS One 6(1):e16256

    Article  PubMed  CAS  Google Scholar 

  • Abranches R, Arcalis E, Marcel S, Altmann F, Ribeiro-Pedro M, Rodriguez J, Stoger E (2008) Functional specialization of Medicago truncatula leaves and seeds does not affect the subcellular localization of a recombinant protein. Planta 227(3):649–658

    Article  PubMed  CAS  Google Scholar 

  • Altpeter F, Baisakh N, Beachy R, Bock R, Capell T, Christou P, Daniell H, Datta K, Datta S, Dix PJ, Fauquet C, Huang N, Kohli A, Mooibroek H, Nicholson L, Nguyen TT, Nugent G, Raemakers K, Romano A, Somers DA, Stoger E, Taylor N, Visser R (2005) Particle bombardment and the genetic enhancement of crops: myths and realities. Mol Breed 15:305–327

    Article  Google Scholar 

  • Angelovici R, Galili G, Fernie AR, Fait A (2010) Seed desiccation: a bridge between maturation and germination. Trends Plant Sci 15(4):211–218

    Article  PubMed  CAS  Google Scholar 

  • Arcalis E, Marcel S, Altmann F, Kolarich D, Drakakaki G, Fischer R, Christou P, Stoger E (2004) Unexpected deposition patterns of recombinant proteins in post-endoplasmic reticulum compartments of wheat endosperm. Plant Physiol 136(3):3457–3466

    Article  PubMed  CAS  Google Scholar 

  • Arcalis E, Stadlmann J, Marcel S, Drakakaki G, Winter V, Rodriguez J, Fischer R, Altmann F, Stoger E (2010) The changing fate of a secretory glycoprotein in developing maize endosperm. Plant Physiol 153(2):693–702

    Article  PubMed  CAS  Google Scholar 

  • Avila EL, Zouhar J, Agee AE, Carter DG, Chary SN, Raikhel NV (2003) Tools to study plant organelle biogenesis. Point mutation lines with disrupted vacuoles and high-speed confocal screening of green fluorescent protein-tagged organelles. Plant Physiol 133(4):1673–1676

    Article  PubMed  CAS  Google Scholar 

  • Bagga S, Adams H, Kemp JD, Sengupta-Gopalan C (1995) Accumulation of 15-kilodalton zein in novel protein bodies in transgenic tobacco. Plant Physiol 107(1):13–23

    PubMed  CAS  Google Scholar 

  • Bagga S, Adams HP, Rodriguez FD, Kemp JD, Sengupta-Gopalan C (1997) Coexpression of the maize delta-zein and beta-zein genes results in stable accumulation of delta-zein in endoplasmic reticulum-derived protein bodies formed by beta-zein. Plant Cell 9(9):1683–1696

    Article  PubMed  CAS  Google Scholar 

  • Banc A, Desbat B, Renard D, Popineau Y, Mangavel C, Navailles L (2009) Exploring the interactions of gliadins with model membranes: effect of confined geometry and interfaces. Biopolymers 91(8):610–622

    Article  PubMed  CAS  Google Scholar 

  • Bassham DC, Raikhel NV (2000) Unique features of the plant vacuolar sorting machinery. Curr Opin Cell Biol 12(4):491–495

    Article  PubMed  CAS  Google Scholar 

  • Bednarek SY, Raikhel NV (1992) Intracellular trafficking of secretory proteins. Plant Mol Biol 20(1):133–150

    Article  PubMed  CAS  Google Scholar 

  • Carlson JA, Rogers BB, Sifers RN, Finegold MJ, Clift SM, DeMayo FJ, Bullock DW, Woo SL (1989) Accumulation of PiZ alpha 1-antitrypsin causes liver damage in transgenic mice. J Clin Invest 83(4):1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Coleman CE, Herman EM, Takasaki K, Larkins BA (1996) The maize gamma-zein sequesters alpha-zein and stabilizes its accumulation in protein bodies of transgenic tobacco endosperm. Plant Cell 8(12):2335–2345

    Article  PubMed  CAS  Google Scholar 

  • Coleman CE, Yoho PR, Escobar S, Ogawa M (2004) The accumulation of alpha-zein in transgenic tobacco endosperm is stabilized by co-expression of beta-zein. Plant Cell Physiol 45(7):864–871

    Article  PubMed  CAS  Google Scholar 

  • Conley AJ, Joensuu JJ, Richman A, Menassa R (2011) Protein body-inducing fusions for high-level production and purification of recombinant proteins in plants. Plant Biotechnol J (in press)

  • Crofts AJ, Washida H, Okita TW, Ogawa M, Kumamaru T, Satoh H (2004) Targeting of proteins to endoplasmic reticulum-derived compartments in plants. The importance of RNA localization. Plant Physiol 136(3):3414–3419

    Article  PubMed  CAS  Google Scholar 

  • Crofts AJ, Crofts N, Whitelegge JP, Okita TW (2010) Isolation and identification of cytoskeleton-associated prolamine mRNA binding proteins from developing rice seeds. Planta 231(6):1261–1276

    Article  PubMed  CAS  Google Scholar 

  • Drakakaki G, Marcel S, Arcalis E, Altmann F, Gonzalez-Melendi P, Fischer R, Christou P, Stoger E (2006) The intracellular fate of a recombinant protein is tissue dependent. Plant Physiol 141(2):578–586

    Article  PubMed  CAS  Google Scholar 

  • Ebine K, Okatani Y, Uemura T, Goh T, Shoda K, Niihama M, Morita MT, Spitzer C, Otegui MS, Nakano A, Ueda T (2008) A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana. Plant Cell 20(11):3006–3021

    Article  PubMed  CAS  Google Scholar 

  • Floss DM, Sack M, Arcalis E, Stadlmann J, Quendler H, Rademacher T, Stoger E, Scheller J, Fischer R, Conrad U (2009) Influence of elastin-like peptide fusions on the quantity and quality of a tobacco-derived human immunodeficiency virus-neutralizing antibody. Plant Biotechnol J 7(9):899–913

    Article  PubMed  CAS  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SE, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129(1):13–22

    Article  PubMed  CAS  Google Scholar 

  • Frigerio L, de Virgilio M, Prada A, Faoro F, Vitale A (1998) Sorting of phaseolin to the vacuole is saturable and requires a short C-terminal peptide. Plant Cell 10(6):1031–1042

    Article  PubMed  CAS  Google Scholar 

  • Frigerio L, Hinz G, Robinson DG (2008) Multiple vacuoles in plant cells: rule or exception? Traffic 9(10):1564–1570

    Article  PubMed  CAS  Google Scholar 

  • Fuji K, Shimada T, Takahashi H, Tamura K, Koumoto Y, Utsumi S, Nishizawa K, Maruyama N, Hara-Nishimura I (2007) Arabidopsis vacuolar sorting mutants (green fluorescent seed) can be identified efficiently by secretion of vacuole-targeted green fluorescent protein in their seeds. Plant Cell 19(2):597–609

    Article  PubMed  CAS  Google Scholar 

  • Galili G (2004) ER-derived compartments are formed by highly regulated processes and have special functions in plants. Plant Physiol 136(3):3411–3413

    Article  PubMed  CAS  Google Scholar 

  • Gallie DR, Young TE (1994) The regulation of gene expression in transformed maize aleurone and endosperm protoplasts. Analysis of promoter activity, intron enhancement, and mRNA untranslated regions on expression. Plant Physiol 106(3):929–939

    Article  PubMed  CAS  Google Scholar 

  • Gattolin S, Sorieul M, Frigerio L (2010) Mapping of tonoplast intrinsic proteins in maturing and germinating Arabidopsis seeds reveals dual localization of embryonic TIPs to the tonoplast and plasma membrane. Mol Plant 4(1):180–189

    Article  PubMed  CAS  Google Scholar 

  • Geetha KB, Lending CR, Lopes MA, Wallace JC, Larkins BA (1991) Opaque-2 modifiers increase gamma-zein synthesis and alter its spatial distribution in maize endosperm. Plant Cell 3(11):1207–1219

    Article  PubMed  CAS  Google Scholar 

  • Geli MI, Torrent M, Ludevid D (1994) Two structural domains mediate two sequential events in [gamma]-Zein targeting: protein endoplasmic reticulum retention and protein body formation. Plant Cell 6(12):1911–1922

    Article  PubMed  CAS  Google Scholar 

  • Gietl C, Schmid M (2001) Ricinosomes: an organelle for developmentally regulated programmed cell death in senescing plant tissues. Naturwissenschaften 88:49–58

    Article  PubMed  CAS  Google Scholar 

  • Greenwood JS, Helm M, Gietl C (2005) Ricinosomes and endosperm transfer cell structure in programmed cell death of the nucellus during Ricinus seed development. Proc Natl Acad Sci USA 102(6):2238–2243

    Article  PubMed  CAS  Google Scholar 

  • Hara-Nishimura II, Shimada T, Hatano K, Takeuchi Y, Nishimura M (1998) Transport of storage proteins to protein storage vacuoles is mediated by large precursor-accumulating vesicles. Plant Cell 10(5):825–836

    Article  PubMed  CAS  Google Scholar 

  • Herman EM (2008) Endoplasmic reticulum bodies: solving the insoluble. Curr Opin Plant Biol 11(6):672–679

    Article  PubMed  CAS  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11(4):601–614

    Article  PubMed  CAS  Google Scholar 

  • Herman E, Schmidt M (2004) Endoplasmic reticulum to vacuole trafficking of endoplasmic reticulum bodies provides an alternate pathway for protein transfer to the vacuole. Plant Physiol 136(3):3440–3446

    Article  PubMed  CAS  Google Scholar 

  • Hillmer S, Movafeghi A, Robinson DG, Hinz G (2001) Vacuolar storage proteins are sorted in the cis-cisternae of the pea cotyledon Golgi apparatus. J Cell Biol 152(1):41–50

    Article  PubMed  CAS  Google Scholar 

  • Hinz G, Hillmer S, Baumer M, Hohl II (1999) Vacuolar storage proteins and the putative vacuolar sorting receptor BP-80 exit the golgi apparatus of developing pea cotyledons in different transport vesicles. Plant Cell 11(8):1509–1524

    Article  PubMed  CAS  Google Scholar 

  • Hinz G, Colanesi S, Hillmer S, Rogers JC, Robinson DG (2007) Localization of vacuolar transport receptors and cargo proteins in the Golgi apparatus of developing Arabidopsis embryos. Traffic 8(10):1452–1464

    Article  PubMed  CAS  Google Scholar 

  • Hoh B, Hinz G, Jeong BK, Robinson DG (1995) Protein storage vacuoles form de novo during pea cotyledon development. J Cell Sci 108(Pt 1):299–310

    PubMed  CAS  Google Scholar 

  • Hohl I, Robinson DG, Chrispeels MJ, Hinz G (1996) Transport of storage proteins to the vacuole is mediated by vesicles without a clathrin coat. J Cell Sci 109(Pt 10):2539–2550

    PubMed  CAS  Google Scholar 

  • Holding DR, Otegui MS, Li B, Meeley RB, Dam T, Hunter BG, Jung R, Larkins BA (2007) The maize floury1 gene encodes a novel endoplasmic reticulum protein involved in zein protein body formation. Plant Cell 19(8):2569–2582

    Article  PubMed  CAS  Google Scholar 

  • Holkeri H, Vitale A (2001) Vacuolar sorting determinants within a plant storage protein trimer act cumulatively. Traffic 2(10):737–741

    Article  PubMed  CAS  Google Scholar 

  • Hsu SM, Hsu PL, McMillan PN, Fanger H (1982) Russell bodies: a light and electron microscopic immunoperoxidase study. Am J Clin Pathol 77(1):26–31

    PubMed  CAS  Google Scholar 

  • Hunter BG, Beatty MK, Singletary GW, Hamaker BR, Dilkes BP, Larkins BA, Jung R (2002) Maize opaque endosperm mutations create extensive changes in patterns of gene expression. Plant Cell 14(10):2591–2612

    Article  PubMed  CAS  Google Scholar 

  • Hunter PR, Craddock CP, Di Benedetto S, Roberts LM, Frigerio L (2007) Fluorescent reporter proteins for the tonoplast and the vacuolar lumen identify a single vacuolar compartment in Arabidopsis cells. Plant Physiol 145(4):1371–1382

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Phillips TE, Rogers SW, Rogers JC (2000) Biogenesis of the protein storage vacuole crystalloid. J Cell Biol 150(4):755–770

    Article  PubMed  CAS  Google Scholar 

  • Jiang L, Phillips TE, Hamm CA, Drozdowicz YM, Rea PA, Maeshima M, Rogers SW, Rogers JC (2001) The protein storage vacuole: a unique compound organelle. J Cell Biol 155(6):991–1002

    Article  PubMed  CAS  Google Scholar 

  • Joensuu JJ, Conley AJ, Lienemann M, Brandle JE, Linder MB, Menassa R (2010) Hydrophobin fusions for high-level transient protein expression and purification in Nicotiana benthamiana. Plant Physiol 152(2):622–633

    Article  PubMed  CAS  Google Scholar 

  • Jurgens G (2004) Membrane trafficking in plants. Annu Rev Cell Dev Biol 20:481–504

    Article  PubMed  CAS  Google Scholar 

  • Kaloff CR, Haas IG (1995) Coordination of immunoglobulin chain folding and immunoglobulin chain assembly is essential for the formation of functional IgG. Immunity 2(6):629–637

    Article  PubMed  CAS  Google Scholar 

  • Kawakatsu T, Hirose S, Yasuda H, Takaiwa F (2010) Reducing rice seed storage protein accumulation leads to changes in nutrient quality and storage organelle formation. Plant Physiol 154(4):1842–1854

    Article  PubMed  CAS  Google Scholar 

  • Kim CS, Woo Ym YM, Clore AM, Burnett RJ, Carneiro NP, Larkins BA (2002) Zein protein interactions, rather than the asymmetric distribution of zein mRNAs on endoplasmic reticulum membranes, influence protein body formation in maize endosperm. Plant Cell 14(3):655–672

    Article  PubMed  CAS  Google Scholar 

  • Kim CS, Hunter BG, Kraft J, Boston RS, Yans S, Jung R, Larkins BA (2004) A defective signal peptide in a 19-kD alpha-zein protein causes the unfolded protein response and an opaque endosperm phenotype in the maize De*-B30 mutant. Plant Physiol 134(1):380–387

    Article  PubMed  CAS  Google Scholar 

  • Kinney AJ, Jung R, Herman EM (2001) Cosuppression of the alpha subunits of beta-conglycinin in transgenic soybean seeds induces the formation of endoplasmic reticulum-derived protein bodies. Plant Cell 13(5):1165–1178

    Article  PubMed  CAS  Google Scholar 

  • Kirsch T, Paris N, Butler JM, Beevers L, Rogers JC (1994) Purification and initial characterization of a potential plant vacuolar targeting receptor. Proc Natl Acad Sci USA 91(8):3403–3407

    Article  PubMed  CAS  Google Scholar 

  • Kogan MJ, Lopez O, Cocera M, Lopez-Iglesias C, De La Maza A, Giralt E (2004) Exploring the interaction of the surfactant N-terminal domain of gamma-Zein with soybean phosphatidylcholine liposomes. Biopolymers 73(2):258–268

    Article  PubMed  CAS  Google Scholar 

  • Larre C, Penninck S, Bouchet B, Lollier V, Tranquet O, Denery-Papini S, Guillon F, Rogniaux H (2010) Brachypodium distachyon grain: identification and subcellular localization of storage proteins. J Exp Bot 61(6):1771–1783

    Article  PubMed  CAS  Google Scholar 

  • Lending CR, Larkins BA (1989) Changes in the zein composition of protein bodies during maize endosperm development. Plant Cell 1(10):1011–1023

    Article  PubMed  CAS  Google Scholar 

  • Lending CR, Larkins BA (1992) Effect of the floury-2 locus on protein body formation during maize endosperm development. Protoplasma 171:123–133

    Article  Google Scholar 

  • Levanony H, Rubin R, Altschuler Y, Galili G (1992) Evidence for a novel route of wheat storage proteins to vacuoles. J Cell Biol 119(5):1117–1128

    Article  PubMed  CAS  Google Scholar 

  • Li X, Wu Y, Zhang DZ, Gillikin JW, Boston RS, Franceschi VR, Okita TW (1993) Rice prolamine protein body biogenesis: a BiP-mediated process. Science 262(5136):1054–1056

    Article  PubMed  CAS  Google Scholar 

  • Llop-Tous I, Madurga S, Giralt E, Marzabal P, Torrent M, Ludevid MD (2010) Relevant elements of a maize gamma-zein domain involved in protein body biogenesis. J Biol Chem 285(46):35633–35644

    Article  PubMed  CAS  Google Scholar 

  • Loos A, Van Droogenbroeck B, Hillmer S, Grass J, Pabst M, Castilho A, Kunert R, Liang M, Arcalis E, Robinson DG, Depicker A, Steinkellner H (2011) Expression of antibody fragments with a controlled N-glycosylation pattern and induction of ER-derived vesicles in seeds of Arabidopsis thaliana. Plant Physiol (in press)

  • Ludevid Mugica MD, Bastida Virgili M, Llompart Royo B, Marzabal Luna P, Torrent Quetglas M (2007) Production of proteins. European Patent Application. Publication number EP1819725, published on August 22, 2007

  • Mainieri D, Rossi M, Archinti M, Bellucci M, De Marchis F, Vavassori S, Pompa A, Arcioni S, Vitale A (2004) Zeolin. A new recombinant storage protein constructed using maize gamma-zein and bean phaseolin. Plant Physiol 136(3):3447–3456

    Article  PubMed  CAS  Google Scholar 

  • Matsushima R, Hayashi Y, Yamada K, Shimada T, Nishimura M, Hara-Nishimura I (2003) The ER body, a novel endoplasmic reticulum-derived structure in Arabidopsis. Plant Cell Physiol 44(7):661–666

    Article  PubMed  CAS  Google Scholar 

  • Mattioli L, Anelli T, Fagioli C, Tacchetti C, Sitia R, Valetti C (2006) ER storage diseases: a role for ERGIC-53 in controlling the formation and shape of Russell bodies. J Cell Sci 119(Pt 12):2532–2541

    Article  PubMed  CAS  Google Scholar 

  • Mohanty A, Luo A, DeBlasio S, Ling X, Yang Y, Tuthill DE, Williams KE, Hill D, Zadrozny T, Chan A, Sylvester AW, Jackson D (2009a) Advancing cell biology and functional genomics in maize using fluorescent protein-tagged lines. Plant Physiol 149(2):601–605

    Article  PubMed  CAS  Google Scholar 

  • Mohanty A, Yang Y, Luo A, Sylvester AW, Jackson D (2009b) Methods for generation and analysis of fluorescent protein-tagged maize lines. Methods Mol Biol 526:71–89

    Article  PubMed  CAS  Google Scholar 

  • Munro S, Pelham HR (1986) An Hsp70-like protein in the ER: identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46(2):291–300

    Article  PubMed  CAS  Google Scholar 

  • Muntz K (1998) Deposition of storage proteins. Plant Mol Biol 38(1–2):77–99

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus, JM, Paris N. (2006) Plant Vacuoles: from Biogenesis to Function. Plant Cell Monographs 1/2006, 63–82. doi:10.1007/7089_005

  • Nicholson L, Gonzalez-Melendi P, van Dolleweerd C, Tuck H, Perrin Y, Ma JK, Fischer R, Christou P, Stoger E (2005) A recombinant multimeric immunoglobulin expressed in rice shows assembly-dependent subcellular localization in endosperm cells. Plant Biotechnol J 3(1):115–127

    Article  PubMed  CAS  Google Scholar 

  • Niemes S, Langhans M, Viotti C, Scheuring D, San Wan Yan M, Jiang L, Hillmer S, Robinson DG, Pimpl P (2010a) Retromer recycles vacuolar sorting receptors from the trans-Golgi network. Plant J 61(1):107–121

    Article  PubMed  CAS  Google Scholar 

  • Niemes S, Labs M, Scheuring D, Krueger F, Langhans M, Jesenofsky B, Robinson DG, Pimpl P (2010b) Sorting of plant vacuolar proteins is initiated in the ER. Plant J 62(4):601–614

    Article  PubMed  CAS  Google Scholar 

  • Oda Y, Higaki T, Hasezawa S, Kutsuna N (2009) Chapter 3. New insights into plant vacuolar structure and dynamics. Int Rev Cell Mol Biol 277:103–135

    Article  PubMed  CAS  Google Scholar 

  • Okamoto T, Shimada T, Hara-Nishimura I, Nishimura M, Minamikawa T (2003) C-terminal KDEL sequence of a KDEL-tailed cysteine proteinase (sulfhydryl-endopeptidase) is involved in formation of KDEL vesicle and in efficient vacuolar transport of sulfhydryl-endopeptidase. Plant Physiol 132(4):1892–1900

    Article  PubMed  CAS  Google Scholar 

  • Olbrich A, Hillmer S, Hinz G, Oliviusson P, Robinson DG (2007) Newly formed vacuoles in root meristems of barley and pea seedlings have characteristics of both protein storage and lytic vacuoles. Plant Physiol 145(4):1383–1394

    Article  PubMed  CAS  Google Scholar 

  • Onda Y, Kumamaru T, Kawagoe Y (2009) ER membrane-localized oxidoreductase Ero1 is required for disulfide bond formation in the rice endosperm. Proc Natl Acad Sci USA 106(33):14156–14161

    Article  PubMed  CAS  Google Scholar 

  • Onda Y, Nagamine A, Sakurai M, Kumamaru T, Ogawa M, Kawagoe Y (2011) Distinct roles of protein disulfide isomerase and p5 sulfhydryl oxidoreductases in multiple pathways for oxidation of structurally diverse storage proteins in rice. Plant Cell 23(1):210–223

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Mastronarde DN, Kang BH, Bednarek SY, Staehelin LA (2001) Three-dimensional analysis of syncytial-type cell plates during endosperm cellularization visualized by high resolution electron tomography. Plant Cell 13(9):2033–2051

    Article  PubMed  CAS  Google Scholar 

  • Otegui MS, Herder R, Schulze J, Jung R, Staehelin LA (2006) The proteolytic processing of seed storage proteins in Arabidopsis embryo cells starts in the multivesicular bodies. Plant Cell 18(10):2567–2581

    Article  PubMed  CAS  Google Scholar 

  • Paris N, Neuhaus JM (2002) BP-80 as a vacuolar sorting receptor. Plant Mol Biol 50(6):903–914

    Article  PubMed  CAS  Google Scholar 

  • Park M, Lee D, Lee GJ, Hwang I (2005) AtRMR1 functions as a cargo receptor for protein trafficking to the protein storage vacuole. J Cell Biol 170(5):757–767

    Article  PubMed  CAS  Google Scholar 

  • Park JH, Oufattole M, Rogers JC (2007) Golgi-mediated vacuolar sorting in plant cells: RMR proteins are sorting receptors for the protein aggregation/membrane internalization pathway. Plant Sci 172:728–745

    Article  CAS  Google Scholar 

  • Pompa A, Vitale A (2006) Retention of a bean phaseolin/maize gamma-zein fusion in the endoplasmic reticulum depends on disulfide bond formation. Plant Cell 18(10):2608–2621

    Article  PubMed  CAS  Google Scholar 

  • Rechinger KB, Simpson DJ, Svendsen I, Cameron-Mills V (1993) A role for gamma 3 hordein in the transport and targeting of prolamin polypeptides to the vacuole of developing barley endosperm. Plant J 4(5):841–853

    Article  PubMed  CAS  Google Scholar 

  • Reyes FC, Sun B, Guo H, Gruis DF, Otegui MS (2010) Agrobacterium tumefaciens-mediated transformation of maize endosperm as a tool to study endosperm cell biology. Plant Physiol 153(2):624–631

    Article  PubMed  CAS  Google Scholar 

  • Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS (2011) Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 23(2):769–784

    Article  PubMed  CAS  Google Scholar 

  • Robinson DG, Hinz G (1997) Vacuole biogenesis and protein transport to the plant vacuole: a comparison with the yeast vacuole and mammalian lysosome. Protoplasma 197:1–25

    Article  CAS  Google Scholar 

  • Robinson DG, Hinz G (1999) Golgi-mediated transport of seed storage proteins. Seed Sci Res 9:267–283

    Article  CAS  Google Scholar 

  • Robinson DG, Bäumer M, Hinz G, Hohl I (1997) Ultrastructure of the pea cotyledon Golgi apparatus: origin of dense vesicles and the action of brefeldin A. Protoplasma 200:198–209

    Article  CAS  Google Scholar 

  • Robinson DG, Bäumer M, Hinz G, Hohl I (1998) Vesicle transfer of storage proteins to the vacuole: The role of the Golgi apparatus and multivesicular bodies. Annual Gatersleben Research Conference No. 2, Gatersleben, ALLEMAGNE (1997) 1998, vol. 152, no 6 (118 p.) (39 ref.), pp. 659–667

  • Rubin R, Levanony H, Galili G (1992) Evidence for the presence of two different types of protein bodies in wheat endosperm. Plant Physiol 99(2):718–724

    Article  PubMed  CAS  Google Scholar 

  • Russell W (1890) An address on a characteristic organism of cancer. Br Med J 2(1563):1356–1360

    Article  PubMed  CAS  Google Scholar 

  • Saint-Jean B, Seveno-Carpentier E, Alcon C, Neuhaus JM, Paris N (2010) The cytosolic tail dipeptide Ile-Met of the pea receptor BP80 is required for recycling from the prevacuole and for endocytosis. Plant Cell 22(8):2825–2837

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Kishida K, Takata K, Takahashi H, Shimada T, Tanaka K, Morita S, Satoh S, Masumura T (2009) A green fluorescent protein fused to rice prolamin forms protein body-like structures in transgenic rice. J Exp Bot 60(2):615–627

    Article  PubMed  CAS  Google Scholar 

  • Samuels AL, Giddings TH Jr, Staehelin LA (1995) Cytokinesis in tobacco BY-2 and root tip cells: a new model of cell plate formation in higher plants. J Cell Biol 130(6):1345–1357

    Article  PubMed  CAS  Google Scholar 

  • Saumonneau A, Rottier K, Conrad U, Popineau Y, Gueguen J, Francin-Allami M (2011) Expression of a new chimeric protein with a highly repeated sequence in tobacco cells. Plant Cell Rep (in press)

  • Schmid M, Simpson D, Kalousek F, Gietl C (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 206(3):466–475

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Simpson DJ, Sarioglu H, Lottspeich F, Gietl C (2001) The ricinosomes of senescing plant tissue bud from the endoplasmic reticulum. Proc Natl Acad Sci USA 98(9):5353–5358

    Article  PubMed  CAS  Google Scholar 

  • Segal G, Song R, Messing J (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165(1):387–397

    PubMed  CAS  Google Scholar 

  • Segui-Simarro JM, Staehelin LA (2006) Cell cycle-dependent changes in Golgi stacks, vacuoles, clathrin-coated vesicles and multivesicular bodies in meristematic cells of Arabidopsis thaliana: a quantitative and spatial analysis. Planta 223(2):223–236

    Article  PubMed  CAS  Google Scholar 

  • Segui-Simarro JM, Austin JR 2nd, White EA, Staehelin LA (2004) Electron tomographic analysis of somatic cell plate formation in meristematic cells of Arabidopsis preserved by high-pressure freezing. Plant Cell 16(4):836–856

    Article  PubMed  CAS  Google Scholar 

  • Sherameti I, Venus Y, Drzewiecki C, Tripathi S, Dan VM, Nitz I, Varma A, Grundler FM, Oelmuller R (2008) PYK10, a beta-glucosidase located in the endoplasmatic reticulum, is crucial for the beneficial interaction between Arabidopsis thaliana and the endophytic fungus Piriformospora indica. Plant J 54(3):428–439

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7(7):945–956

    Article  PubMed  CAS  Google Scholar 

  • Shimada T, Kuroyanagi M, Nishimura M, Hara-Nishimura I (1997) A pumpkin 72-kDa membrane protein of precursor-accumulating vesicles has characteristics of a vacuolar sorting receptor. Plant Cell Physiol 38(12):1414–1420

    PubMed  CAS  Google Scholar 

  • Shimada T, Watanabe E, Tamura K, Hayashi Y, Nishimura M, Hara-Nishimura I (2002) A vacuolar sorting receptor PV72 on the membrane of vesicles that accumulate precursors of seed storage proteins (PAC vesicles). Plant Cell Physiol 43(10):1086–1095

    Article  PubMed  CAS  Google Scholar 

  • Shy G, Ehler L, Herman E, Galili G (2001) Expression patterns of genes encoding endomembrane proteins support a reduced function of the Golgi in wheat endosperm during the onset of storage protein deposition. J Exp Bot 52(365):2387–2388

    Article  PubMed  CAS  Google Scholar 

  • Sparkes IA, Frigerio L, Tolley N, Hawes C (2009) The plant endoplasmic reticulum: a cell-wide web. Biochem J 423(2):145–155

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Saito Y, Kitagawa T, Morita S, Masumura T, Tanaka K (2005) A novel vesicle derived directly from endoplasmic reticulum is involved in the transport of vacuolar storage proteins in rice endosperm. Plant Cell Physiol 46(1):245–249

    Article  PubMed  CAS  Google Scholar 

  • Takemoto Y, Coughlan SJ, Okita TW, Satoh H, Ogawa M, Kumamaru T (2002) The rice mutant esp2 greatly accumulates the glutelin precursor and deletes the protein disulfide isomerase. Plant Physiol 128(4):1212–1222

    Article  PubMed  CAS  Google Scholar 

  • Tanchak MA, Fowke LC (1987) The morphology of multivesicular bodies in soybean protoplasts and their role in endocytosis. Protoplasma 138:173–182

    Article  Google Scholar 

  • Torrent M, Llop-Tous I, Ludevid MD (2009) Protein body induction: a new tool to produce and recover recombinant proteins in plants. Methods Mol Biol 483:193–208

    Article  PubMed  CAS  Google Scholar 

  • Tosi P, Parker M, Gritsch CS, Carzaniga R, Martin B, Shewry PR (2009) Trafficking of storage proteins in developing grain of wheat. J Exp Bot 60(3):979–991

    Article  PubMed  CAS  Google Scholar 

  • Toyooka K, Okamoto T, Minamikawa T (2000) Mass transport of proform of a KDEL-tailed cysteine proteinase (SH-EP) to protein storage vacuoles by endoplasmic reticulum-derived vesicle is involved in protein mobilization in germinating seeds. J Cell Biol 148(3):453–464

    Article  PubMed  CAS  Google Scholar 

  • Valetti C, Grossi CE, Milstein C, Sitia R (1991) Russell bodies: a general response of secretory cells to synthesis of a mutant immunoglobulin which can neither exit from, nor be degraded in, the endoplasmic reticulum. J Cell Biol 115(4):983–994

    Article  PubMed  CAS  Google Scholar 

  • Van Droogenbroeck B, Cao J, Stadlmann J, Altmann F, Colanesi S, Hillmer S, Robinson DG, Van Lerberge E, Terryn N, Van Montagu M, Liang M, Depicker A, De Jaeger G (2007) Aberrant localization and underglycosylation of highly accumulating single-chain Fv-Fc antibodies in transgenic Arabidopsis seeds. Proc Natl Acad Sci USA 104(4):1430–1435

    Article  PubMed  CAS  Google Scholar 

  • Verwoerd TC, van Paridon PA, van Ooyen AJ, van Lent JW, Hoekema A, Pen J (1995) Stable accumulation of Aspergillus niger phytase in transgenic tobacco leaves. Plant Physiol 109(4):1199–1205

    Article  PubMed  CAS  Google Scholar 

  • Vitale A, Denecke J (1999) The endoplasmic reticulum-gateway of the secretory pathway. Plant Cell 11(4):615–628

    Article  PubMed  CAS  Google Scholar 

  • Vitale A, Hinz G (2005) Sorting of proteins to storage vacuoles: how many mechanisms? Trends Plant Sci 10(7):316–323

    Article  PubMed  CAS  Google Scholar 

  • Vitale A, Raikhel NV (1999) What do proteins need to reach different vacuoles? Trends Plant Sci 4(4):149–155

    Article  PubMed  Google Scholar 

  • Wakasa Y, Yang L, Hirose S, Takaiwa F (2009) Expression of unprocessed glutelin precursor alters polymerization without affecting trafficking and accumulation. J Exp Bot 60(12):3503–3511

    Article  PubMed  CAS  Google Scholar 

  • Wakasa Y, Yasuda H, Oono Y, Kawakatsu T, Hirose S, Takahashi H, Hayashi S, Yang L, Takaiwa F (2011) Expression of ER quality control-related genes in response to changes in BiP1 levels in developing rice endosperm. Plant J 65(5):675–689

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Li Y, Lo SW, Hillmer S, Sun SS, Robinson DG, Jiang L (2007) Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies. Plant Physiol 143(4):1628–1639

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Ren Y, Liu X, Jiang L, Chen L, Han X, Jin M, Liu S, Liu F, Lv J, Zhou K, Su N, Bao Y, Wan J (2010) OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant J 64(5):812–824

    Article  PubMed  CAS  Google Scholar 

  • Watanabe E, Shimada T, Tamura K, Matsushima R, Koumoto Y, Nishimura M, Hara-Nishimura I (2004) An ER-localized form of PV72, a seed-specific vacuolar sorting receptor, interferes the transport of an NPIR-containing proteinase in Arabidopsis leaves. Plant Cell Physiol 45(1):9–17

    Article  PubMed  CAS  Google Scholar 

  • Weiss S, Burrows PD, Meyer J, Wabl MR (1984) A Mott cell hybridoma. Eur J Immunol 14(8):744–748

    Article  PubMed  CAS  Google Scholar 

  • Wenzel D, Schauermann G, von Lupke A, Hinz G (2005) The cargo in vacuolar storage protein transport vesicles is stratified. Traffic 6(1):45–55

    Article  PubMed  CAS  Google Scholar 

  • Woo YM, Hu DW, Larkins BA, Jung R (2001) Genomics analysis of genes expressed in maize endosperm identifies novel seed proteins and clarifies patterns of zein gene expression. Plant Cell 13(10):2297–2317

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Messing J (2010) RNA interference-mediated change in protein body morphology and seed opacity through loss of different zein proteins. Plant Physiol 153(1):337–347

    Article  PubMed  CAS  Google Scholar 

  • Wudick MM, Luu DT, Maurel C (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol 184(2):289–302

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Nagano AJ, Ogasawara K, Hara-Nishimura I, Nishimura M (2009) The ER body, a new organelle in Arabidopsis thaliana, requires NAI2 for its formation and accumulates specific beta-glucosidases. Plant Signal Behav 4(9):849–852

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Guo F, Liu B, Huang N, Watkins SC (2003) Expression and localization of human lysozyme in the endosperm of transgenic rice. Planta 216(4):597–603

    PubMed  CAS  Google Scholar 

  • Yasuda H, Hirose S, Kawakatsu T, Wakasa Y, Takaiwa F (2009) Overexpression of BiP has inhibitory effects on the accumulation of seed storage proteins in endosperm cells of rice. Plant Cell Physiol 50(8):1532–1543

    Article  PubMed  CAS  Google Scholar 

  • Zheng HQ, Staehelin A (2011) Protein storage vacuoles are transformed into lytic vacuoles in root meristematic cells of germinating seedlings by multiple, cell type-specific mechanisms. Plant Physiol (in press)

  • Zouhar J, Hicks GR, Raikhel NV (2004) Sorting inhibitors (Sortins): chemical compounds to study vacuolar sorting in Arabidopsis. Proc Natl Acad Sci USA 101(25):9497–9501

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eva Stoger.

Additional information

Handling Editor: David Robinson

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibl, V., Stoger, E. The formation, function and fate of protein storage compartments in seeds. Protoplasma 249, 379–392 (2012). https://doi.org/10.1007/s00709-011-0288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-011-0288-z

Keywords

Navigation