Skip to main content
Log in

Nonlinear vibration analysis of smart truncated conical porous composite shells reinforced with Terfenol-D particles

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This article analyzes the nonlinear vibrations of porous truncated conical polyvinylidene fluoride (PVDF) reinforced with Terfenol-D particles. The effective properties of the magneto-electro-elastic composite have been obtained using the Eshelby–Mori–Tanaka model. Also, the porosity in the composite is considered uniform. The governing equation of the system is derived based on the von Karman theory of nonlinear strains and the theory of first-order shear deformation by applying the principle of minimum energy potential and Hamilton's principle. These equations are solved using the generalized differential quadrature method. The effect of porosity, vertex angle, shell length, boundary conditions, and volume fraction of Terfenol-D will be discussed. Also, for validation, the obtained results were compared with those found in the literature, which was a good answer, along with the accuracy. Results show that the nonlinear to linear natural frequency ratio has a decreasing trend at the lower vertex angle. The present findings can serve as a reference point for subsequent assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sofiyev, A.: The non-linear vibration of FGM truncated conical shells. Compos. Struct. 94(7), 2237–2245 (2012)

    MathSciNet  Google Scholar 

  2. Xu, C., Xia, Z., Chia, C.: Non-linear theory and vibration analysis of laminated truncated, thick, conical shells. Int. J. Non-Linear Mech. 31(2), 139–154 (1996)

    Google Scholar 

  3. Ebrahimi, F., Rastgoo, A.: Nonlinear vibration analysis of piezo-thermo-electrically actuated functionally graded circular plates. Arch. Appl. Mech. 81, 361–383 (2011)

    ADS  Google Scholar 

  4. Ghorbanpour Arani, A., et al.: Electro-thermo nonlocal nonlinear vibration in an embedded polymeric piezoelectric micro plate reinforced by DWBNNTs using DQM. J. Mech. Sci. Technol. 26, 3047–3057 (2012)

    Google Scholar 

  5. Hao, Y., et al.: Nonlinear vibrations of FGM circular conical panel under in-plane and transverse excitation. J. Vib. Eng. Technol. 6, 453–469 (2018)

    Google Scholar 

  6. Sofiyev, A., Kuruoglu, N.: Determination of the excitation frequencies of laminated orthotropic non-homogeneous conical shells. Compos. B Eng. 132, 151–160 (2018)

    Google Scholar 

  7. Ansari, R., Hasrati, E., Torabi, J.: Nonlinear vibration response of higher-order shear deformable FG-CNTRC conical shells. Compos. Struct. 222, 110906 (2019)

    Google Scholar 

  8. Yang, S., et al.: Nonlinear vibrations of FGM truncated conical shell under aerodynamics and in-plane force along meridian near internal resonances. Thin-Walled Struct. 142, 369–391 (2019)

    Google Scholar 

  9. Karimiasl, M., Ebrahimi, F., Vinyas, M.: Nonlinear vibration analysis of multiscale doubly curved piezoelectric composite shell in hygrothermal environment. J. Intell. Mater. Syst. Struct. 30(10), 1594–1609 (2019)

    Google Scholar 

  10. Bakhtiari, M., Lakis, A.A., Kerboua, Y.: Nonlinear vibration of truncated conical shells: Donnell, Sanders and Nemeth theories. Int. J. Nonlinear Sci. Numer. Simul. 21(1), 83–97 (2020)

    MathSciNet  Google Scholar 

  11. Amabili, M., Balasubramanian, P.: Nonlinear vibrations of truncated conical shells considering multiple internal resonances. Nonlinear Dyn. 100(1), 77–93 (2020)

    Google Scholar 

  12. Moghaddam, S.M.F., Ahmadi, H.: Active vibration control of truncated conical shell under harmonic excitation using piezoelectric actuator. Thin-Walled Struct. 151, 106642 (2020)

    Google Scholar 

  13. Aris, H., Ahmadi, H.: Nonlinear vibration analysis of FGM truncated conical shells subjected to harmonic excitation in thermal environment. Mech. Res. Commun. 104, 103499 (2020)

    Google Scholar 

  14. Ebrahimi, F., Mahesh, V.: On nonlinear vibration of sandwiched polymer-CNT/GPL-fiber nanocomposite nanoshells. Thin-Walled Struct. 146, 106431 (2020)

    Google Scholar 

  15. Vuong, P.M., Duc, N.D.: Nonlinear vibration of FGM moderately thick toroidal shell segment within the framework of Reddy’s third order-shear deformation shell theory. Int. J. Mech. Mater. Des. 16, 245–264 (2020)

    CAS  Google Scholar 

  16. Ali, A.Y., Hasan, H.M.: Non-linear large amplitude vibration of orthotropic FGM convex and concave toroidal shell segments including the damping effect using the shear deformation theory. Thin-Walled Struct. 173, 109035 (2022)

    Google Scholar 

  17. Yang, S., et al.: Nonlinear vibration of functionally graded graphene platelet-reinforced composite truncated conical shell using first-order shear deformation theory. Appl. Math. Mech. 42(7), 981–998 (2021)

    MathSciNet  Google Scholar 

  18. Mohammadrezazadeh, S., Jafari, A.A.: Nonlinear vibration analysis of laminated composite angle-ply cylindrical and conical shells. Compos. Struct. 255, 112867 (2021)

    Google Scholar 

  19. Aris, H. and H. Ahmadi, Nonlinear forced vibration and resonance analysis of rotating stiffened FGM truncated conical shells in a thermal environment. Mechanics Based Design of Structures and Machines, 2021: p. 1–25.

  20. Parhi, A., Singh, B., Panda, S.K.: Nonlinear free vibration analysis of composite conical shell panel with cluster of delamination in hygrothermal environment. Eng. Comput. 37, 1565–1577 (2021)

    Google Scholar 

  21. Mirjavadi, S.S., et al.: Investigating nonlinear vibrations of multi-scale truncated conical shell segments with carbon nanotube/fiberglass reinforcement using a higher order conical shell theory. J. Strain Anal. Eng. Des. 56(3), 181–192 (2021)

    Google Scholar 

  22. Zhang, Y., Liu, W.: Nonlinear vibration response of a functionally graded carbon nanotube-reinforced composite conical shell using a stress function method. Acta Mech. 233(8), 3157–3174 (2022)

    MathSciNet  Google Scholar 

  23. Vahidi, H., et al.: Nonlinear vibration, stability, and bifurcation of rotating axially moving conical shells. Acta Mech. 233(8), 3175–3196 (2022)

    MathSciNet  Google Scholar 

  24. Kai, G., et al.: Transient and steady-state nonlinear vibrations of FGM truncated conical shell subjected to blast loads and transverse periodic load using post-difference method. Mech. Adv. Mater. Struct. pp. 1–19 (2022)

  25. Mirjavadi, S.S., et al.: Analysis of nonlinear vibrations of CNT-/fiberglass-reinforced multi-scale truncated conical shell segments. Mech. Based Des. Struct. Mach. 50(6), 2067–2083 (2022)

    Google Scholar 

  26. Sheykhi, A., et al.: Free nonlinear vibration analysis of nano-truncated conical shells based on modified strain gradient theory. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 236(1), 110–146 (2022)

    Google Scholar 

  27. Zhang, Y.-W., et al.: Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories. Geomech. Eng. 33(4), 381 (2023)

    ADS  Google Scholar 

  28. Mangalasseri, A.S., et al.: Vibration based energy harvesting performance of magnetoelectro-elastic beams reinforced with carbon nanotubes. Adv. Nano Res. 14(1), 27–43 (2023)

    Google Scholar 

  29. Huang, Y., et al.: Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Arch. Civil Mech. Eng. 21(4), 1–15 (2021)

    MathSciNet  Google Scholar 

  30. Arshid, E., et al.: Porosity-dependent vibration analysis of FG microplates embedded by polymeric nanocomposite patches considering hygrothermal effect via an innovative plate theory. Eng. Comput. pp. 1–22 (2021)

  31. Heidari, F., et al.: On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes. Steel Composite Struct. Int. J. 38(5), 533–545 (2021)

    Google Scholar 

  32. Alimirzaei, S., Mohammadimehr, M., Tounsi, A.: Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions. Struct. Eng. Mech. 71(5), 485–502 (2019)

    Google Scholar 

  33. Garg, A., et al.: Machine learning models for predicting the compressive strength of concrete containing nano silica. Comput. Concr. 30(1), 33 (2022)

    Google Scholar 

  34. Xia, L., et al.: The finite element method for dynamics of FG porous truncated conical panels reinforced with graphene platelets based on the 3-D elasticity. Adv. Nano Res. 14(4), 375–389 (2023)

    Google Scholar 

  35. Onuralp, Y., et al., Experimental tensile test and micro mechanic investigation on carbon nanotube reinforced carbon fiber composite beams. Adv. Nano Res, 2023. 14.

  36. Quan, T.Q., Kim, S.-E., Duc, N.D.: Nonlinear dynamic response and vibration of shear deformable piezoelectric functionally graded truncated conical panel in thermal environments. Eur. J. Mech. A. Solids 77, 103795 (2019)

    MathSciNet  Google Scholar 

  37. Van Thanh, N., Khoa, N.D., Duc, N.D.: Nonlinear dynamic analysis of piezoelectric functionally graded porous truncated conical panel in thermal environments. Thin-Walled Struct. 154, 106837 (2020)

    Google Scholar 

  38. Van Vinh, P., Van Chinh, N., Tounsi, A.: Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM. Eur. J. Mech. A. Solids 96, 104743 (2022)

    ADS  MathSciNet  Google Scholar 

  39. Kumar, Y., Gupta, A., Tounsi, A.: Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model. Adv. Nano Res. 11(1), 001 (2021)

    Google Scholar 

  40. Cuong-Le, T., et al.: Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory. Adv. Nano Res. 12(5), 441 (2022)

    Google Scholar 

  41. Katiyar, V., Gupta, A., Tounsi, A.: Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D FGPs) with partial supports by using FEM. Steel Composite Struct. Int. J. 45(5), 621–640 (2022)

    Google Scholar 

  42. Bellifa, H., et al.: Influence of porosity on thermal buckling behavior of functionally graded beams. Smart Struct. Syst. 27(4), 719–728 (2021)

    Google Scholar 

  43. Al-Osta, M.A., et al.: Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model. Smart Struct. Syst. Int. J. 28(4), 499–513 (2021)

    Google Scholar 

  44. Mesbah, A., et al.: Formulation and evaluation a finite element model for free vibration and buckling behaviours of functionally graded porous (FGP) beams. Struct. Eng. Mech. 86(3), 291 (2023)

    Google Scholar 

  45. Liu, G., et al.: Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation. Eur. J. Mech. A/Solids 95, 104649 (2022)

    ADS  MathSciNet  Google Scholar 

  46. Hadji, M., et al.: Combined influence of porosity and elastic foundation parameters on the bending behavior of advanced sandwich structures. Steel Compos. Struct. 46(1), 1 (2023)

    Google Scholar 

  47. Kolahchi, R., Ghorbanpour, A.A.: Nonlinear vibration and instability analysis of a PVDF cylindrical shell reinforced with BNNTS conveying viscose fluid using HDQ method. 2012.

  48. Abediokhchi, J., Kouchakzadeh, M., Shakouri, M.: Buckling analysis of cross-ply laminated conical panels using GDQ method. Compos. B Eng. 55, 440–446 (2013)

    Google Scholar 

  49. Rabani Bidgoli, M., Saeed Karimi, M., Ghorbanpour Arani, A.: Nonlinear vibration and instability analysis of functionally graded CNT-reinforced cylindrical shells conveying viscous fluid resting on orthotropic Pasternak medium. Mech. Adv. Mater. Struct. 23(7), 819–831 (2016)

    CAS  Google Scholar 

  50. Nguyen Dinh, D., Nguyen, P.D.: The dynamic response and vibration of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations. Materials 10(10), 1194 (2017)

    ADS  PubMed  PubMed Central  Google Scholar 

  51. Arani, A.G., Karimi, M.S., Bidgoli, M.R.: Nonlinear vibration and instability of rotating piezoelectric nanocomposite sandwich cylindrical shells containing axially flowing and rotating fluid–particle mixture. Polym. Compos. 38, E577–E596 (2017)

    CAS  Google Scholar 

  52. Sofiyev, A.: The stability analysis of shear deformable FGM sandwich conical shells under the axial load. Compos. Struct. 176, 803–811 (2017)

    Google Scholar 

  53. Ebrahimi, F., Heidari, E.: Surface effects on nonlinear vibration and buckling analysis of embedded FG nanoplates via refined HOSDPT in hygrothermal environment considering physical neutral surface position. Adv. Aircraft Spacecraft Sci. 5(6), 691 (2018)

    Google Scholar 

  54. Ahari, M.F., Ghadiri, M.: Resonator vibration of a magneto-electro-elastic nano-plate integrated with FGM layer subjected to the nano mass-Spring-damper system and a moving load. Waves Random Complex Media, 1–39 (2022).

  55. Ebrahimi, F., Ahari, M.F.: Magnetostriction-assisted active control of the multi-layered nanoplates: effect of the porous functionally graded facesheets on the system’s behavior. Eng. Comput. 1–15 (2021).

  56. Huang, J.H., Yu, J.: Electroelastic Eshelby tensors for an ellipsoidal piezoelectric inclusion. Compos. Eng. 4(11), 1169–1182 (1994)

    Google Scholar 

  57. Ebrahimi, F., Habibi, S.: Nonlinear eccentric low-velocity impact response of a polymer-carbon nanotube-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments. Mech. Adv. Mater. Struct. 25(5), 425–438 (2018)

    CAS  Google Scholar 

  58. Wang, Y.Q., Zhao, H.L.: Free vibration analysis of metal foam core sandwich beams on elastic foundation using Chebyshev collocation method. Arch. Appl. Mech. 89, 2335–2349 (2019)

    ADS  Google Scholar 

  59. Wang, Q., Shao, D., Qin, B.: A simple first-order shear deformation shell theory for vibration analysis of composite laminated open cylindrical shells with general boundary conditions. Compos. Struct. 184, 211–232 (2018)

    Google Scholar 

  60. Ebrahimi, F., Ahari, M.F.: Mechanics of magnetostrictive materials and structures.

  61. Ebrahimi, F., Farajzadeh Ahari, M.: Dynamic analysis of sandwich magnetostrictive nanoplates with a mass-spring-damper stimulator. Int. J. Struct. Stabil. Dyn. (2023)

  62. Reddy, J.N.: Energy principles and variational methods in applied mechanics. Wiley, 2017.

  63. Ebrahimi, F., Shafiee, M.-S., Ahari, M.F.: Buckling analysis of single and double-layer annular graphene sheets in thermal environment. Eng. Comput. 1–15 (2022)

  64. Ebrahimi, F., Shafiei, M.-S., Ahari, M.F.: Vibration analysis of single and multi-walled circular graphene sheets in thermal environment using GDQM. Waves in Random and Complex Media 1–40 (2022).

  65. Ebrahimi, F., Mollazeinal, A., Farajzadeh Ahari, M.: Active vibration control of truncated conical porous smart composite shells. Int. J. Struct. Stabil. Dyn. (2023)

  66. Akbari, M., et al.: Free vibration of FGM Lévy conical panels. Compos. Struct. 116, 732–746 (2014)

    Google Scholar 

  67. Jalili, N.: Piezoelectric-based vibration control: from macro to micro/nano scale systems. Springer Science & Business Media (2009)

  68. Asrari, R., et al.: Buckling analysis of heterogeneous magneto-electro-thermo-elastic cylindrical nanoshells based on nonlocal strain gradient elasticity theory. Mech. Based Des. Struct. Mach. 50(3), 1–24 (2020)

    Google Scholar 

  69. Rahimi, Y., et al.: Temperature-dependent vibrational behavior of bilayer doubly curved micro-nano liposome shell: Simulation of drug delivery mechanism. J. Thermal Stress. 1–28 (2023).

  70. Mizuji, Z.K., et al.: Numerical modeling of a body vessel for dynamic study of a nano cylindrical shell carrying fluid and a moving nanoparticle. Eng. Anal. Boundary Elem. 152, 362–382 (2023)

    MathSciNet  Google Scholar 

  71. Zhao, X., Liew, K.M.: Free vibration analysis of functionally graded conical shell panels by a meshless method. Compos. Struct. 93(2), 649–664 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest in preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Relations related to the calculation of the Eshelby tensor:

$$ \begin{aligned}{\overline{\text{G}}}_{1111} &= \frac{{\uppi }}{2}\mathop \int \limits_{0}^{1} {\text{A}}^{ - 1} \left( {1 - {\text{x}}^{2} } \right)\left\{ \left( {3{\text{a}}_{11} + {\text{b}}_{11} } \right)\left( {1 - {\text{x}}^{2} } \right)^{3} + \left( {4{\text{d}}_{11} + 4{\text{f}}_{11} + {\text{h}}_{11} } \right)\left( {1 - {\text{x}}^{2} } \right)^{2} {\uprho }^{2} {\text{x}}^{2} \right.\\ &\quad\quad\quad\qquad\qquad\qquad\qquad\quad\left. + \left( {4{\text{k}}_{11} + 4{\text{m}}_{11} + {\text{n}}_{11} } \right)\left( {1 - {\text{x}}^{2} } \right){\uprho }^{4} {\text{x}}^{4} + 4{\text{r}}_{11} {\uprho }^{6} {\text{x}}^{6} \right\}dx \end{aligned}$$
$$\begin{aligned} {\overline{\text{G}}}_{1122} &= \frac{{\uppi }}{2}\mathop \int \limits_{0}^{1} {\text{A}}^{ - 1} \left( {1 - {\text{x}}^{2} } \right)\Bigg\{ \left( {{\text{a}}_{11} + 3{\text{b}}_{11} } \right)\left( {1 - {\text{x}}^{2} } \right)^{3} + \left( {4{\text{d}}_{11} + {\text{f}}_{11} + 3{\text{h}}_{11} } \right)\left( {1 - {\text{x}}^{2} } \right)^{2} {\uprho }^{2} {\text{x}}^{2} \\ &\quad\quad\quad\quad\qquad\qquad\qquad\quad\quad + \left( {4{\text{k}}_{11} + {\text{m}}_{11} + 3{\text{n}}_{11} } \right)\left( {1 - {\text{x}}^{2} } \right){\uprho }^{4} {\text{x}}^{4} + 4{\text{r}}_{11} {\uprho }^{6} {\text{x}}^{6} \Bigg\}dx \end{aligned}$$
$$\begin{aligned} {\overline{\text{G}}}_{1133} &= 2{\uppi }\mathop \int \limits_{0}^{1} {\text{A}}^{ - 1} {\uprho }^{2} {\text{x}}^{2} \Bigg\{ \left( {{\text{a}}_{11} + {\text{b}}_{11} } \right)\left( {1 - {\text{x}}^{2} } \right)^{3} + \left( {2{\text{d}}_{11} + {\text{f}}_{11} + {\text{h}}_{11} } \right)\left( {1 - {\text{x}}^{2} } \right)^{2} {\uprho }^{2} {\text{x}}^{2}\\ &\qquad\qquad\qquad\qquad\qquad\qquad + \left( {2{\text{k}}_{11} + {\text{m}}_{11} + {\text{n}}_{11} } \right)\left( {1 - {\text{x}}^{2} } \right){\uprho }^{4} {\text{x}}^{4} + 2{\text{r}}_{11} {\uprho }^{6} {\text{x}}^{2} \Bigg\}dx \end{aligned}$$
$$ {\overline{\text{G}}}_{1212} = {\overline{\text{G}}}_{2112} = {\overline{\text{G}}}_{2121} = {\overline{\text{G}}}_{1221} = \frac{\pi }{2}\mathop \int \limits_{0}^{1} {\text{A}}^{ - 1} \left( {1 - {\text{x}}^{2} } \right)^{2} \left\{ {{\text{a}}_{12} \left( {1 - {\text{x}}^{2} } \right)^{2} + {\text{b}}_{12} \left( {1 - {\text{x}}^{2} } \right){\uprho }^{2} {\text{x}}^{2} + {\text{d}}_{12} {\uprho }^{4} {\text{x}}^{4} } \right\}dx $$
$$ {\overline{\text{G}}}_{1313} = {\overline{\text{G}}}_{3113} = {\overline{\text{G}}}_{3131} = {\overline{\text{G}}}_{1331} = {\overline{\text{G}}}_{2323} = {\overline{\text{G}}}_{3223} = {\overline{\text{G}}}_{3232} = {\overline{\text{G}}}_{2332} = 2\pi \mathop \int \limits_{0}^{1} B^{ - 1} (1 - {\text{x}}^{2} ){{ \rho }}^{2} {\text{x}}^{2} \left\{ {{\text{d}}_{13} \left( {1 - {\text{x}}^{2} } \right) + {\text{f}}_{13} {\uprho }^{2} {\text{x}}^{2} } \right\}{\text{dx}} $$
$$ {\overline{\text{G}}}_{1413} = {\overline{\text{G}}}_{4113} = {\overline{\text{G}}}_{4131} = {\overline{\text{G}}}_{1431} = {\overline{\text{G}}}_{2423} = {\overline{\text{G}}}_{4223} = {\overline{\text{G}}}_{4232} = {\overline{\text{G}}}_{2432} = 2\pi \mathop \int \limits_{0}^{1} B^{ - 1} \left( {1 - x^{2} } \right)\rho^{2} x^{2} \left\{ {d_{14} \left( {1 - x^{2} } \right) + f_{14} \rho^{2} x^{2} } \right\}dx $$
$$ {\overline{\text{G}}}_{2211} = {\overline{\text{G}}}_{1122} $$
$$ {\overline{\text{G}}}_{2222} = {\overline{\text{G}}}_{1111} $$
$$ {\overline{\text{G}}}_{2233} = {\overline{\text{G}}}_{1133} $$
$$ {\overline{\text{G}}}_{3311} = {\overline{\text{G}}}_{3322} = 2\pi \mathop \int \limits_{0}^{1} B^{ - 1} \left( {1 - x^{2} } \right)\left\{ {\left( {1 - x^{2} } \right)^{2} + f_{33} \left( {1 - x^{2} } \right)\rho^{2} x^{2} + h_{33} \rho^{4} x^{4} } \right\}dx $$
$$ {\overline{\text{G}}}_{3333} = 4{\uppi }\mathop \int \limits_{0}^{1} {\text{B}}^{ - 1} {\uprho }^{2} {\text{x}}^{2} \left\{ {{\text{d}}_{33} \left( {1 - x^{2} } \right)^{2} + {\text{f}}_{33} \left( {1 - x^{2} } \right){\uprho }^{2} {\text{x}}^{2} + {\text{h}}_{33} {\uprho }^{4} {\text{x}}^{4} } \right\}{\text{dx}} $$
$$ {\overline{\text{G}}}_{3411} = {\overline{\text{G}}}_{4311} = {\overline{\text{G}}}_{3422} = {\overline{\text{G}}}_{4322} = 2\pi \mathop \int \limits_{0}^{1} {\text{B}}^{ - 1} \left( {1 - x^{2} } \right)\left\{ {{\text{d}}_{34} \left( {1 - x^{2} } \right)^{2} + {\text{f}}_{34} \left( {1 - x^{2} } \right){\uprho }^{2} {\text{x}}^{2} + {\text{h}}_{34} {\uprho }^{4} {\text{x}}^{4} } \right\}dx $$
$$ {\overline{\text{G}}}_{3433} = {\overline{\text{G}}}_{4333} = 4\pi \mathop \int \limits_{0}^{1} {\text{B}}^{ - 1} x^{2} \left\{ {{\text{d}}_{34} \left( {1 - x^{2} } \right)^{2} + {\text{f}}_{34} \left( {1 - x^{2} } \right){\uprho }^{2} {\text{x}}^{2} + {\text{h}}_{34} {\uprho }^{4} {\text{x}}^{4} } \right\}dx $$
$$ {\overline{\text{G}}}_{4411} = {\overline{\text{G}}}_{4422} = 2\pi \mathop \int \limits_{0}^{1} {\text{B}}^{ - 1} (1 - x^{2} )\left\{ {{\text{d}}_{44} \left( {1 - x^{2} } \right)^{2} + {\text{f}}_{44} \left( {1 - x^{2} } \right){\uprho }^{2} {\text{x}}^{2} + {\text{h}}_{44} {\uprho }^{4} {\text{x}}^{4} } \right\}dx $$
$$ {\overline{\text{G}}}_{4411} = 4\pi \mathop \int \limits_{0}^{1} {\text{B}}^{ - 1} {\uprho }^{2} {\text{x}}^{2} \left\{ {{\text{d}}_{44} \left( {1 - x^{2} } \right)^{2} + {\text{f}}_{44} \left( {1 - x^{2} } \right){\uprho }^{2} {\text{x}}^{2} + {\text{h}}_{44} {\uprho }^{4} {\text{x}}^{4} } \right\}dx $$
$$ A = \left\{ {a_{0} (1 - x^{2} ) + b_{0} \rho^{2} x^{2} } \right\}B $$
$$ B = d_{0} (1 - x^{2} )^{3} + f_{0} (1 - x^{2} )^{2} \rho^{2} x^{2} + h_{0} (1 - x^{2} )\rho^{4} x^{4} + k_{0} \rho^{6} x^{6} $$
$$ a_{0} = \frac{{\left( {c_{11} - c_{12} } \right)}}{2}, \quad b_{0} = c_{44} , \quad d_{0} = - c_{11} \left( {e_{15}^{2} + \kappa_{11} c_{44} } \right) $$
$$ f_{0} = - c_{44} \left\{ {e_{15}^{2} + \kappa_{11} c_{44} + \kappa_{33} c_{11} + \left( {e_{31} + e_{15} } \right)^{2} } \right\} + 2\left( {c_{13} + c_{44} } \right)\left( {e_{31} + e_{15} } \right)e_{15} - 2c_{11} e_{15} e_{33} - \kappa_{11} c_{11} c_{33} + \kappa_{11} \left( {c_{13} + c_{44} } \right)^{2} $$
$$ h_{0} = - c_{44} \left( {\kappa_{33} c_{44} + 2e_{15} e_{33} + \kappa_{11} c_{33} } \right) - c_{33} \left\{ {\kappa_{33} c_{11} + \left( {e_{31} + e_{15} } \right)^{2} } \right\} + \left( {c_{13} + c_{44} } \right)\left\{ {\kappa_{33} \left( {c_{13} + c_{44} } \right) + 2e_{33} \left( {e_{13} + e_{15} } \right)} \right\} - c_{11} e_{33}^{2} $$
$$ k_{0} = - c_{44} \left( {\kappa_{13} c_{33} + e_{33}^{2} } \right) $$
$$ a_{11} = \frac{{ - \left( {c_{11} - c_{12} } \right)\left( {e_{15}^{2} + c_{44} \kappa_{11} } \right)}}{2} $$
$$ b_{11} = - c_{11} \left( {e_{15}^{2} + c_{44} \kappa_{11} } \right) $$
$$ d_{11} = - c_{44} \left( {e_{15}^{2} + c_{44} \kappa_{11} } \right) $$
$$ f_{11} = \frac{{ - \left( {c_{11} - c_{12} } \right)\left( {c_{44} \kappa_{33} + 2e_{15} e_{33} + c_{33} \kappa_{11} } \right)}}{2} $$
$$ h_{11} = - c_{11} c_{44} \kappa_{33} - c_{44} \left( {e_{31} + e_{15} } \right)^{2} + 2\left( {c_{13} + c_{44} } \right)\left( {e_{31} + e_{15} } \right)e_{15} - 2c_{11} e_{15} e_{33} - c_{11} c_{33} \kappa_{11} + \left( {c_{13} + c_{44} } \right)^{2} \kappa_{11} $$
$$ k_{11} = - c_{44} \left( {\kappa_{33} c_{44} + 2e_{15} e_{33} + c_{33} \kappa_{11} } \right) $$
$$ m_{11} = \frac{{ - \left( {c_{11} - c_{12} } \right)\left( {c_{33} \kappa_{33} + e_{33}^{2} } \right)}}{2} $$
$$ n_{11} = - \kappa_{33} c_{11} c_{33} + \kappa_{33} \left( {c_{13} + c_{44} } \right)^{2} - c_{33} \left( {e_{31} + e_{15} } \right)^{2} - c_{11} e_{33}^{2} + 2\left( {c_{13} + c_{44} } \right)\left( {e_{31} + e_{15} } \right)e_{33} $$
$$ r_{11} = - c_{44} \left( {\kappa_{33} c_{33} + e_{33}^{2} } \right) $$
$$ a_{12} = \frac{{\left( {c_{11} + c_{12} } \right)\left( {e_{15}^{2} + \kappa_{11} c_{44} } \right)}}{2} $$
$$ b_{12} = c_{44} \left\{ {\kappa_{33} c_{11} - \frac{{\kappa_{33} \left( {c_{11} - c_{12} } \right)}}{2} + \left( {e_{31} + e_{15} } \right)^{2} - } \right\} - e_{15} \left\{ {2\left( {c_{13} + c_{44} } \right)\left( {e_{31} + e_{15} } \right) - 2c_{11} e_{33} + \left( {c_{11} - c_{12} } \right)e_{33} } \right\} + \kappa_{11} \left\{ {c_{11} c_{33} - \left( {c_{13} + c_{44} } \right)^{2} - \frac{{c_{33} \left( {c_{11} - c_{12} } \right)}}{2}} \right\} $$
$$ d_{12} = \kappa_{33} \left\{ {2\left( {c_{13} + c_{44} } \right)^{2} + \frac{{c_{33} \left( {c_{11} + c_{12} } \right)}}{2}} \right\} + c_{33} \left( {e_{31} + e_{15} } \right)^{2} - 2\left( {c_{31} + c_{44} } \right)\left( {e_{31} + e_{15} } \right)e_{33} + \frac{{e_{33}^{2} \left( {c_{11} + c_{12} } \right)}}{2} $$
$$ a_{13} = \frac{{\left( {c_{11} - c_{12} } \right)}}{2} $$
$$ b_{13} = c_{44} $$
$$ d_{13} = e_{15} \left( {e_{31} + e_{15} } \right) + \kappa_{11} \left( {c_{13} + c_{44} } \right) $$
$$ f_{14} = - c_{33} \left( {e_{31} + e_{15} } \right) + e_{33} \left( {c_{13} + c_{44} } \right) $$
$$ a_{22} = - c_{11} \left( {e_{15}^{2} + c_{44} \kappa_{11} } \right) $$
$$ b_{22} = \frac{{ - \left( {c_{11} - c_{12} } \right)\left( {e_{15}^{2} + c_{44} \kappa_{11} } \right)}}{2} $$
$$ d_{22} = - c_{44} \left( {e_{15}^{2} + c_{44} \kappa_{11} } \right) $$
$$ f_{22} = - c_{11} c_{44} \kappa_{33} - c_{44} \left( {e_{31} + e_{15} } \right)^{2} + 2\left( {c_{13} + c_{44} } \right)\left( {e_{31} + e_{15} } \right)e_{15} - 2c_{11} e_{15} e_{33} - c_{11} c_{33} \kappa_{11} + \left( {c_{13} + c_{44} } \right)^{2} \kappa_{11} $$
$$ h_{22} = - \frac{{ - \left( {c_{11} - c_{12} } \right)\left( {c_{44} \kappa_{33} + 2e_{15} e_{33} + c_{33} \kappa_{11} } \right)}}{2} $$
$$ k_{22} = - c_{44} \left( {\kappa_{33} c_{44} + 2e_{15} e_{33} + c_{33} \kappa_{11} } \right) $$
$$ m_{22} = - \kappa_{33} c_{11} c_{33} + \kappa_{33} \left( {c_{13} + c_{44} } \right)^{2} - c_{33} \left( {e_{31} + e_{15} } \right)^{2} + 2\left( {c_{13} + c_{44} } \right)\left( {e_{31} + e_{15} } \right)e_{33} - c_{11} e_{33}^{2} $$
$$ n_{22} = \frac{{ - \left( {c_{11} - c_{12} } \right)\left( {c_{33} \kappa_{33} + e_{33}^{2} } \right)}}{2} $$
$$ r_{22} = - c_{44} \left( {\kappa_{33} c_{33} + e_{33}^{2} } \right) $$
$$ a_{23} = \frac{{\left( {c_{11} - c_{12} } \right)}}{2} $$
$$ b_{23} = c_{44} $$
$$ d_{23} = e_{15} \left( {e_{31} + e_{15} } \right) + \kappa_{11} \left( {c_{13} + c_{44} } \right) $$
$$ f_{23} = e_{33} \left( {e_{31} + e_{15} } \right) + \kappa_{33} \left( {c_{13} + c_{44} } \right) $$
$$ a_{24} = \frac{{\left( {c_{11} - c_{12} } \right)}}{2} $$
$$ b_{24} = c_{44} $$
$$ d_{24} = c_{13} e_{15} - c_{44} e_{31} $$
$$ f_{24} = - c_{33} \left( {e_{31} + e_{15} } \right) + e_{33} \left( {c_{13} + c_{44} } \right) $$
$$ a_{33} = \frac{{\left( {c_{11} - c_{12} } \right)}}{2} $$
$$ b_{33} = c_{44} $$
$$ d_{33} = - \kappa_{11} c_{11} $$
$$ f_{33} = - \kappa_{11} c_{44} - \kappa_{33} c_{11} - \left( {e_{31} + e_{15} } \right)^{2} $$
$$ h_{33} = - \kappa_{33} c_{44} $$
$$ a_{34} = \frac{{\left( {c_{11} - c_{12} } \right)}}{2} $$
$$ b_{34} = c_{44} $$
$$ d_{34} = - e_{15} c_{11} $$
$$ f_{34} = - e_{15} c_{44} - e_{33} c_{11} + \left( {e_{31} + e_{15} } \right)\left( {c_{13} + c_{44} } \right) $$
$$ h_{34} = - e_{33} c_{4} $$
$$ a_{44} = \frac{{\left( {c_{11} - c_{12} } \right)}}{2} $$
$$ b_{44} = c_{44} $$
$$ d_{44} = c_{11} c_{44} $$
$$ f_{44} = c_{44}^{2} + c_{11} c_{33} - \left( {c_{13} + c_{44} } \right)^{2} $$
$$ h_{44} = c_{33} c_{44} $$
$$ S_{1111} = \frac{1}{4\pi }\left\{ {C_{11} \overline{G}_{1111} + C_{12} \overline{G}_{1221} + C_{13} \overline{G}_{1331} + e_{31} \overline{G}_{1431} } \right\} $$
$$ S_{1122} = \frac{1}{4\pi }\left\{ {C_{12} \overline{G}_{1111} + C_{11} \overline{G}_{1221} + C_{13} \overline{G}_{1331} + e_{31} \overline{G}_{1431} } \right\} $$
$$ S_{1133} = \frac{1}{4\pi }\left\{ {C_{13} \overline{G}_{1111} + C_{13} \overline{G}_{1221} + C_{33} \overline{G}_{1331} + e_{33} \overline{G}_{1431} } \right\} $$
$$ S_{1143} = \frac{1}{4\pi }\left\{ {e_{31} \overline{G}_{1111} + e_{31} \overline{G}_{1221} + e_{33} \overline{G}_{1331} + \kappa_{33} \overline{G}_{1431} } \right\} $$
$$ \begin{aligned} S_{1143} & = S_{1143} = S_{1143} = S_{1143} \\ & = \frac{1}{8\pi }\left\{ {C_{66} \left( {\overline{G}_{1212} + \overline{G}_{2211} } \right) + C_{66} \left( {\overline{G}_{1122} + \overline{G}_{2121} } \right)} \right\} \\ \end{aligned} $$
$$ \begin{aligned} S_{1313} & = S_{1331} = S_{3113} = S_{3131} \\ & = \frac{1}{8\pi }\left\{ {C_{44} \left( {\overline{G}_{1313} + \overline{G}_{3311} } \right) + e_{15} \left( {\overline{G}_{1413} + \overline{G}_{3411} } \right) + C_{44} \left( {\overline{G}_{1133} + \overline{G}_{3131} } \right)} \right\} \\ \end{aligned} $$
$$ \begin{aligned} S_{1341} & = S_{3141} \\ & = \frac{1}{8\pi }\left\{ {e_{15} \left( {\overline{G}_{1313} + \overline{G}_{3311} } \right) - \kappa_{11} \left( {\overline{G}_{1413} + \overline{G}_{3411} } \right) + e_{15} \left( {\overline{G}_{1133} + \overline{G}_{3131} } \right)} \right\} \\ \end{aligned} $$
$$ S_{2211} = \frac{1}{4\pi }\left\{ {C_{11} \overline{G}_{2112} + C_{12} \overline{G}_{2222} + C_{13} \overline{G}_{2332} + e_{31} \overline{G}_{2432} } \right\} $$
$$ S_{2222} = \frac{1}{4\pi }\left\{ {C_{12} \overline{G}_{2112} + C_{11} \overline{G}_{2222} + C_{13} \overline{G}_{2332} + e_{31} \overline{G}_{2432} } \right\} $$
$$ S_{2233} = \frac{1}{4\pi }\left\{ {C_{13} \overline{G}_{2112} + C_{13} \overline{G}_{2222} + C_{33} \overline{G}_{2332} + e_{33} \overline{G}_{2432} } \right\} $$
$$ S_{2243} = \frac{1}{4\pi }\left\{ {e_{31} \overline{G}_{2112} + e_{31} \overline{G}_{2222} + e_{33} \overline{G}_{2332} + \kappa_{33} \overline{G}_{2432} } \right\} $$
$$ \begin{aligned} S_{2223} & = S_{2332} = S_{3223} = S_{3232} \\ & = \frac{1}{8\pi }\left\{ {C_{44} \left( {\overline{G}_{2323} + \overline{G}_{3322} } \right) - e_{15} \left( {\overline{G}_{2423} + \overline{G}_{3422} } \right) + C_{44} \left( {\overline{G}_{2233} + \overline{G}_{3232} } \right)} \right\} \\ \end{aligned} $$
$$ \begin{aligned} S_{2342} & = S_{3242} \\ & = \frac{1}{8\pi }\left\{ {e_{15} \left( {\overline{G}_{2323} + \overline{G}_{3322} } \right) - \kappa_{11} \left( {\overline{G}_{2423} + \overline{G}_{3422} } \right) + e_{15} \left( {\overline{G}_{2233} + \overline{G}_{3232} } \right)} \right\} \\ \end{aligned} $$
$$ S_{3311} = \frac{1}{4\pi }\left\{ {C_{11} \overline{G}_{3113} + C_{12} \overline{G}_{3223} + C_{13} \overline{G}_{3333} + e_{31} \overline{G}_{3433} } \right\} $$
$$ S_{3322} = \frac{1}{4\pi }\left\{ {C_{12} \overline{G}_{3113} + C_{11} \overline{G}_{3223} + C_{13} \overline{G}_{3333} + e_{31} \overline{G}_{3433} } \right\} $$
$$ S_{3333} = \frac{1}{4\pi }\left\{ {C_{13} \overline{G}_{3113} + C_{13} \overline{G}_{3223} + C_{33} \overline{G}_{3333} + e_{33} \overline{G}_{3433} } \right\} $$
$$ S_{3343} = \frac{1}{4\pi }\left\{ {e_{31} \overline{G}_{3113} + e_{31} \overline{G}_{3223} + e_{33} \overline{G}_{3333} + \kappa_{33} \overline{G}_{3433} } \right\} $$
$$ S_{4113} = S_{4131} = \frac{1}{4\pi }\left\{ {C_{44} \overline{G}_{4311} + e_{15} \overline{G}_{4411} + C_{44} \overline{G}_{4131} } \right\} $$
$$ S_{4141} = \frac{1}{4\pi }\left\{ {e_{15} \overline{G}_{4311} - \kappa_{11} \overline{G}_{4411} + e_{15} \overline{G}_{4131} } \right\} $$
$$ S_{4223} = S_{4232} = \frac{1}{4\pi }\left\{ {C_{44} \overline{G}_{4322} + e_{15} \overline{G}_{4422} + C_{44} \overline{G}_{4232} } \right\} $$
$$ S_{4242} = \frac{1}{4\pi }\left\{ {e_{15} \overline{G}_{4322} - \kappa_{11} \overline{G}_{4422} + e_{15} \overline{G}_{4232} } \right\} $$
$$ S_{4311} = \frac{1}{4\pi }\left\{ {C_{11} \overline{G}_{4113} + C_{12} \overline{G}_{4223} + C_{13} \overline{G}_{4333} + e_{31} \overline{G}_{4433} } \right\} $$
$$ S_{4322} = \frac{1}{4\pi }\left\{ {C_{12} \overline{G}_{4113} + C_{11} \overline{G}_{4223} + C_{13} \overline{G}_{4333} + e_{31} \overline{G}_{4433} } \right\} $$
$$ S_{4343} = \frac{1}{4\pi }\left\{ {e_{13} \overline{G}_{4113} + e_{31} \overline{G}_{4223} + e_{13} \overline{G}_{4333} + \kappa_{33} \overline{G}_{4433} } \right\} $$

Appendix B

$$ N_{x} = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \sigma_{x} dz = A_{11} \frac{\partial u}{{\partial x}} + A_{11} \frac{1}{2}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} + B_{11} \frac{{\partial \varphi_{x} }}{\partial x} + A_{12} \frac{1}{r\left( x \right)}\frac{\partial v}{{\partial \theta }} + A_{12} \frac{sin\alpha }{{r\left( x \right)}}u + A_{12} \frac{cos\alpha }{{r\left( x \right)}}w + A_{12} \frac{1}{{2r\left( x \right)^{2} }}\left( {\frac{\partial w}{{\partial \theta }}} \right)^{2} + B_{12} \frac{1}{r\left( x \right)}\frac{{\partial \varphi_{\theta } }}{\partial \theta } + B_{12} \frac{sin\alpha }{{r\left( x \right)}}\varphi_{x} - A_{31}^{e} \phi - A_{31}^{m} \psi $$
(46a)
$$ N_{\theta } = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \sigma_{\theta } dz = A_{12} \frac{\partial u}{{\partial x}} + A_{12} \frac{1}{2}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} + B_{12} \frac{{\partial \varphi_{X} }}{\partial x} + A_{22} \frac{1}{r\left( x \right)}\frac{\partial v}{{\partial \theta }} + A_{22} \frac{sin\alpha }{{r\left( x \right)}}u + A_{22} \frac{cos\alpha }{{r\left( x \right)}}w + A_{22} \frac{1}{{2r\left( x \right)^{2} }}\left( {\frac{\partial w}{{\partial \theta }}} \right)^{2} + B_{22} \frac{1}{r\left( x \right)}\frac{{\partial \varphi_{\theta } }}{\partial \theta } + B_{22} \frac{sin\alpha }{{r\left( x \right)}}\varphi_{x} - A_{32}^{e} \phi - A_{32}^{m} \psi $$
(46b)
$$ N_{x\theta } = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \sigma_{x\theta } dz = A_{44} \frac{1}{r\left( x \right)}\frac{\partial u}{{\partial \theta }} - A_{44} \frac{sin\alpha }{{r\left( x \right)}}v + A_{44} \frac{\partial v}{{\partial x}} + A_{44} \frac{1}{r\left( x \right)}\frac{\partial w}{{\partial x}}\frac{\partial w}{{\partial \theta }} + B_{44} \frac{{\partial \varphi_{\theta } }}{\partial x} + B_{44} \frac{1}{r\left( x \right)}\frac{{\partial \varphi_{x} }}{\partial \theta } - B_{44} \frac{sin\alpha }{{r\left( x \right)}}\varphi_{\theta } - A_{24}^{e} \frac{\partial \phi }{{\partial \theta }} - A_{24}^{m} \frac{\partial \psi }{{\partial \theta }} $$
(46c)
$$ M_{x} = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \sigma_{x} zdz = B_{11} \frac{\partial u}{{\partial x}} + B_{11} \frac{1}{2}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} + D_{11} \frac{{\partial \varphi_{x} }}{\partial x} + B_{12} \frac{1}{r\left( x \right)}\frac{\partial v}{{\partial \theta }} + B_{12} \frac{sin\alpha }{{r\left( x \right)}}u + B_{12} \frac{cos\alpha }{{r\left( x \right)}}w + B_{12} \frac{1}{{2r\left( x \right)^{2} }}\left( {\frac{\partial w}{{\partial \theta }}} \right)^{2} + D_{12} \frac{1}{r\left( x \right)}\frac{{\partial \varphi_{\theta } }}{\partial \theta } + D_{12} \frac{sin\alpha }{{r\left( x \right)}}\varphi_{x} - B_{31}^{e} \phi - B_{31}^{m} \psi $$
(46d)
$$ M_{\theta } = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \sigma_{\theta } zdz = B_{12} \frac{\partial u}{{\partial x}} + B_{12} \frac{1}{2}\left( {\frac{\partial w}{{\partial x}}} \right)^{2} + D_{12} \frac{{\partial \varphi_{x} }}{\partial x} + B_{22} \frac{1}{r\left( x \right)}\frac{\partial v}{{\partial \theta }} + B_{22} \frac{sin\alpha }{{r\left( x \right)}}u + B_{22} \frac{cos\alpha }{{r\left( x \right)}}w + B_{22} \frac{1}{{2r\left( x \right)^{2} }}\left( {\frac{\partial w}{{\partial \theta }}} \right)^{2} + D_{22} \frac{1}{r\left( x \right)}\frac{{\partial \varphi_{\theta } }}{\partial \theta } + D_{22} \frac{sin\alpha }{{r\left( x \right)}}\varphi_{x} - B_{32}^{e} \phi - B_{32}^{m} \psi $$
(46e)
$$ M_{x\theta } = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \sigma_{x\theta } zdz = B_{44} \frac{1}{r\left( x \right)}\frac{\partial u}{{\partial \theta }} - B_{44} \frac{sin\alpha }{{r\left( x \right)}}v + B_{44} \frac{\partial v}{{\partial x}} + B_{44} \frac{1}{r\left( x \right)}\frac{\partial w}{{\partial x}}\frac{\partial w}{{\partial \theta }} + D_{44} \frac{{\partial \varphi_{\theta } }}{\partial x} + D_{44} \frac{1}{r\left( x \right)}\frac{{\partial \varphi_{x} }}{\partial \theta } - D_{44} \frac{sin\alpha }{{r\left( x \right)}}\varphi_{\theta } - B_{24}^{e} \phi - B_{24}^{m} \psi $$
(46f)
$$ Q_{x} = k\mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \sigma_{xz} dz = A_{66} \frac{\partial w}{{\partial x}} + A_{66} \varphi_{x} $$
(46g)
$$ Q_{\theta z} = k\mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \sigma_{\theta z} dz = A_{55} \frac{1}{r\left( x \right)}\frac{\partial w}{{\partial \theta }} + A_{55} \varphi_{\theta } - A_{55} \frac{cos\alpha }{{r\left( x \right)}}v - A_{15}^{e} \frac{\partial \phi }{{\partial x}} - A_{15}^{m} \frac{\partial \psi }{{\partial x}} $$
(46h)
$$ \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \cos \left( {\xi z} \right)\frac{{\partial D_{x} }}{\partial x}dz = \tilde{\kappa }_{11} \frac{{\partial^{2} \phi }}{{\partial x^{2} }} + \tilde{\lambda }_{11} \frac{{\partial^{2} \psi }}{{\partial x^{2} }} $$
(46i)
$$ \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \frac{1}{R\left( x \right)}\cos \left( {\xi z} \right)\frac{{\partial D_{\theta } }}{\partial \theta }dz = \tilde{\kappa }_{22} \frac{{\partial^{2} \phi }}{{\partial \theta^{2} }} + \tilde{\lambda }_{22} \frac{{\partial^{2} \psi }}{{\partial \theta^{2} }} $$
(46j)
$$ \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \xi {\text{sin}}\left( {\xi z} \right)D_{z} dz = - A_{31}^{e} \left( {\frac{\partial u}{{\partial x}} + \frac{1}{2}\frac{\partial w}{{\partial x}}\frac{\partial w}{{\partial x}}} \right) - B_{31}^{e} \frac{{\partial \varphi_{x} }}{\partial x} - A_{32}^{e} \left( {\frac{1}{r\left( x \right)}\frac{\partial v}{{\partial \theta }} + \frac{sin\alpha }{{r\left( x \right)}}u + \frac{\cos \alpha }{{r\left( x \right)}}w + \frac{1}{{2r^{2} \left( x \right)}}\left( {\frac{\partial w}{{\partial \theta }}} \right)^{2} { }} \right) - B_{32}^{e} \left( {\frac{1}{r\left( x \right)}\frac{{\partial \varphi_{\theta } }}{\partial \theta } + \frac{sin\alpha }{{r\left( x \right)}}\varphi_{x} } \right) - \tilde{\kappa }_{33} \phi - \tilde{\lambda }_{33} \psi $$
(46k)
$$ \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \cos \left( {\xi z} \right)\frac{{\partial B_{x} }}{\partial x}dz = \tilde{\lambda }_{11} \frac{{\partial^{2} \phi }}{{\partial x^{2} }} + \tilde{\mu }_{11} \frac{{\partial^{2} \psi }}{{\partial x^{2} }} $$
(46l)
$$ \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \frac{1}{R\left( x \right)}\cos \left( {\xi z} \right)\frac{{\partial B_{\theta } }}{\partial \theta }dz = \tilde{\lambda }_{22} \frac{{\partial^{2} \phi }}{{\partial \theta^{2} }} + \tilde{\mu }_{22} \frac{{\partial^{2} \psi }}{{\partial \theta^{2} }} $$
(46m)
$$ \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \xi {\text{sin}}\left( {\xi z} \right)B_{z} dz = - A_{31}^{m} \left( {\frac{\partial u}{{\partial x}} + \frac{1}{2}\frac{\partial w}{{\partial x}}\frac{\partial w}{{\partial x}}} \right) - B_{31}^{m} \frac{{\partial \varphi_{x} }}{\partial x} - A_{32}^{m} \left( {\frac{1}{r\left( x \right)}\frac{\partial v}{{\partial \theta }} + \frac{sin\alpha }{{r\left( x \right)}}u + \frac{\cos \alpha }{{r\left( x \right)}}w + \frac{1}{{2r^{2} \left( x \right)}}\left( {\frac{\partial w}{{\partial \theta }}} \right)^{2} { }} \right) - B_{32}^{m} \left( {\frac{1}{r\left( x \right)}\frac{{\partial \varphi_{\theta } }}{\partial \theta } + \frac{sin\alpha }{{r\left( x \right)}}\varphi_{x} } \right) - \tilde{\lambda }_{33} \phi - \tilde{\mu }_{33} \psi $$
(46n)

The coefficients \(A_{ij}\), \(B_{ij}\), and \(D_{ij}\) are stretching, bending-stretching (coupling), and bending stiffness, respectively. Moreover, it can be expressed from the following relationships:

$$ \left( {A_{ij} ,B_{ij} ,D_{ij} } \right) = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \left( {c_{ij} ,zc_{ij} ,z^{2} c_{ij} } \right)dz i,j = 1,2,4 $$
(47a)
$$ A_{ij} = k\mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} c_{ij} dz i,j = 5,6 $$
(47b)

Also, the coefficients used in Eq. (46an) can be expressed as follows:

$$ \left( {A_{31}^{e} ,B_{31}^{e} } \right) = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} e_{31} \xi {\text{sin}}\left( {\xi z} \right)\left( {1,z} \right)dz $$
(48a)
$$ \left( {A_{32}^{e} ,B_{32}^{e} } \right) = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} e_{32} \xi {\text{sin}}\left( {\xi z} \right)\left( {1,z} \right)dz $$
(48b)
$$ \left( {A_{31}^{m} ,B_{31}^{m} } \right) = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} q_{31} \xi {\text{sin}}\left( {\xi z} \right)\left( {1,z} \right)dz $$
(48c)
$$ \left( {A_{32}^{m} ,B_{32}^{m} } \right) = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} q_{32} \xi {\text{sin}}\left( {\xi z} \right)\left( {1,z} \right)dz $$
(48d)
$$ \left( {\tilde{\kappa }_{11} ,\tilde{\lambda }_{11} ,\tilde{\mu }_{11} } \right) = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \left( {\kappa_{11} ,\lambda_{11} ,\mu_{11} } \right)cos^{2} \left( {\xi z} \right)dz $$
(48e)
$$ \left( {\tilde{\kappa }_{22} ,\tilde{\lambda }_{22} ,\tilde{\mu }_{22} } \right) = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \left( {\kappa_{22} ,\lambda_{22} ,\mu_{22} } \right)\left( {\frac{1}{R\left( x \right)}} \right)^{2} cos^{2} \left( {\xi z} \right)dz $$
(48f)
$$ \left( {\tilde{\kappa }_{33} ,\tilde{\lambda }_{33} ,\tilde{\mu }_{33} } \right) = \mathop \int \nolimits_{{ - \frac{h}{2}}}^{\frac{h}{2}} \left( {\kappa_{33} ,\lambda_{33} ,\mu_{33} } \right)\xi^{2} {\text{sin}}^{2} \left( {\xi z} \right)dz $$
(48g)

Appendix C

$${A}_{11}\frac{{\partial }^{2}u}{{\partial x}^{2}}+\frac{{A}_{11}sin\alpha }{r(x)}\frac{\partial u}{\partial x}-\frac{{A}_{22}{sin}^{2}\alpha }{{r\left(x\right)}^{2}}u+\frac{{A}_{44}}{r{\left(x\right)}^{2}}\frac{{\partial }^{2}u}{{\partial \theta }^{2}}-\frac{\left({A}_{44}+{A}_{22}\right)sin\alpha }{{r\left(x\right)}^{2}}\frac{\partial v}{\partial \theta }+\frac{\left({A}_{12}+{A}_{44}\right)}{r\left(x\right)}\frac{{\partial }^{2}v}{\partial x\partial \theta }+\frac{{A}_{12}cos\alpha }{r\left(x\right)}\frac{\partial w}{\partial x}-\frac{{A}_{12}sin\alpha cos\alpha }{{r\left(x\right)}^{2}}w+{B}_{11}\frac{{\partial }^{2}{\varphi }_{x}}{{\partial x}^{2}}+\frac{{B}_{11}sin\alpha }{r\left(x\right)}\frac{\partial {\varphi }_{x}}{\partial x}+\frac{{B}_{44}}{r{\left(x\right)}^{2}}\frac{{\partial }^{2}{\varphi }_{x}}{{\partial \theta }^{2}}-\frac{{{B}_{22}sin}^{2}\alpha }{{r\left(x\right)}^{2}}{\varphi }_{x}-\frac{\left({B}_{44}+{B}_{22}\right)sin\alpha }{{r\left(x\right)}^{2}}\frac{\partial {\varphi }_{\theta }}{\partial \theta }+\frac{\left({B}_{44}+{B}_{12}\right)}{r\left(x\right)}\frac{{\partial }^{2}{\varphi }_{\theta }}{\partial x\partial \theta }+{A}_{11}\frac{{\partial }^{2}w}{{\partial x}^{2}}\frac{\partial w}{\partial x}+\frac{\left({A}_{11}-{A}_{12}\right)sin\alpha }{2r\left(x\right)}\frac{\partial w}{\partial x}\frac{\partial w}{\partial x}+\frac{{A}_{44}}{r{\left(x\right)}^{2}}\frac{{\partial }^{2}w}{{\partial \theta }^{2}}\frac{\partial w}{\partial x}-\frac{{A}_{12}sin\alpha }{r{\left(x\right)}^{3}}\frac{\partial w}{\partial \theta }\frac{\partial w}{\partial \theta }-\frac{\left({A}_{12}-{A}_{22}\right)sin\alpha }{2r{\left(x\right)}^{3}}\frac{\partial w}{\partial \theta }\frac{\partial w}{\partial \theta }+\frac{\left({A}_{12}+{A}_{44}\right)}{r{\left(x\right)}^{2}}\frac{{\partial }^{2}w}{\partial x\partial \theta }\frac{\partial w}{\partial \theta }-{A}_{31}^{e}\frac{\partial \phi }{\partial x}-\frac{{A}_{24}^{e}}{r\left(x\right)}\frac{{\partial }^{2}\phi }{{\partial \theta }^{2}}+\frac{\left(-{A}_{31}^{e}+{A}_{32}^{e}\right)sin\alpha }{r\left(x\right)}\phi -{A}_{31}^{m}\frac{\partial \psi }{\partial x}-\frac{{A}_{24}^{m}}{r\left(x\right)}\frac{{\partial }^{2}\psi }{{\partial \theta }^{2}}+\frac{\left(-{A}_{31}^{m}+{A}_{32}^{m}\right)sin\alpha }{r\left(x\right)}\psi ={I}_{0}\frac{{\partial }^{2}u}{{\partial t}^{2}}+{I}_{1}\frac{{\partial }^{2}{\varphi }_{x}}{{\partial t}^{2}}$$
(49a)
$$\frac{\left({A}_{44}+{A}_{22}\right)sin\alpha }{{r\left(x\right)}^{2}}\frac{\partial u}{\partial \theta }+\frac{\left({A}_{44}+{A}_{12}\right)}{r\left(x\right)}\frac{{\partial }^{2}u}{\partial x\partial \theta }+{A}_{44}\frac{{\partial }^{2}v}{{\partial x}^{2}}+\frac{{A}_{22}}{{r\left(x\right)}^{2}}\frac{{\partial }^{2}v}{{\partial \theta }^{2}}+\frac{{A}_{44}sin\alpha }{r\left(x\right)}\frac{\partial v}{\partial x}-\frac{{A}_{44}{sin}^{2}\alpha }{{r\left(x\right)}^{2}}v-\frac{{A}_{55}{cos}^{2}\alpha }{{r\left(x\right)}^{2}}v+\frac{\left({A}_{22}+{A}_{55}\right)cos\alpha }{{r\left(x\right)}^{2}}\frac{\partial w}{\partial \theta }-\frac{\left({B}_{44}+{B}_{22}\right)sin\alpha }{{r\left(x\right)}^{2}}\frac{\partial {\varphi }_{x}}{\partial \theta }+\frac{\left({B}_{44}+{B}_{12}\right)}{r\left(x\right)}\frac{{\partial }^{2}{\varphi }_{x}}{\partial x\partial \theta }+{B}_{44}\frac{{\partial }^{2}{\varphi }_{\theta }}{{\partial x}^{2}}+\frac{{B}_{22}}{{r\left(x\right)}^{2}}\frac{{\partial }^{2}{\varphi }_{\theta }}{{\partial \theta }^{2}}+\frac{{B}_{44}sin\alpha }{r\left(x\right)}\frac{\partial {\varphi }_{\theta }}{\partial x}+{A}_{55}\frac{cos\alpha }{r\left(x\right)} {\varphi }_{\theta }- \frac{{B}_{44}{sin}^{2}\alpha }{{r\left(x\right)}^{2}}{\varphi }_{\theta }+\frac{{A}_{44}}{r\left(x\right)}\frac{{\partial }^{2}w}{{\partial x}^{2}}\frac{\partial w}{\partial \theta }+ \frac{{A}_{44}sin\alpha }{{r\left(x\right)}^{2}}\frac{\partial w}{\partial x}\frac{\partial w}{\partial \theta }+\frac{{A}_{22}}{{r\left(x\right)}^{3}}\frac{{\partial }^{2}w}{{\partial \theta }^{2}}\frac{\partial w}{\partial \theta }+\frac{\left({A}_{44}+{A}_{12}\right)}{r\left(x\right)}\frac{{\partial }^{2}w}{\partial x\partial \theta }\frac{\partial w}{\partial x}-\frac{{A}_{32}^{e}}{r\left(x\right)}\frac{\partial \phi }{\partial \theta }- {A}_{24}^{e}\frac{{\partial }^{2}\phi }{\partial x\partial \theta }-\frac{2{A}_{24}^{e}sin\alpha }{r\left(x\right)}\frac{\partial \phi }{\partial \theta }-{A}_{15}^{e}\frac{cos\alpha }{r(x)}\frac{\partial \phi }{\partial x}-\frac{{A}_{32}^{m}}{r\left(x\right)}\frac{\partial \psi }{\partial \theta }- {A}_{24}^{m}\frac{{\partial }^{2}\psi }{\partial x\partial \theta }-\frac{2{A}_{24}^{m}sin\alpha }{r\left(x\right)}\frac{\partial \psi }{\partial \theta }-{A}_{15}^{m}\frac{cos\alpha }{r(x)}\frac{\partial \psi }{\partial x}={I}_{0}\frac{{\partial }^{2}v}{{\partial t}^{2}}+{I}_{1}\frac{{\partial }^{2}{\varphi }_{\theta }}{{\partial t}^{2}}$$
(49b)
$$-{A}_{12}\frac{cos\alpha }{r\left(x\right)}\frac{\partial u}{\partial x}- \frac{{A}_{22}sin\alpha cos\alpha }{{r\left(x\right)}^{2}}u-\frac{{A}_{22}cos\alpha }{{r\left(x\right)}^{2}} \frac{\partial v}{\partial \theta }-\frac{{A}_{55}cos\alpha }{{r\left(x\right)}^{2}}\frac{\partial v}{\partial \theta }+{A}_{66}\frac{{\partial }^{2}w}{{\partial x}^{2}}-{A}_{66}\frac{sin\alpha }{r(x)}\frac{\partial w}{\partial x}+\frac{{A}_{55}}{{r(x)}^{2}}\frac{{\partial }^{2}w}{{\partial \theta }^{2}}-\frac{{A}_{22}{cos}^{2}\alpha }{{r(x)}^{2}} w+{A}_{66}\frac{\partial {\varphi }_{x}}{\partial x}-{B}_{12}\frac{cos\alpha }{r(x)} \frac{\partial {\varphi }_{x}}{\partial x}-{A}_{66}\frac{sin\alpha }{r(x)}{\varphi }_{x}-\frac{{B}_{22}sin\alpha cos\alpha }{{r(x)}^{2}} {\varphi }_{x}+\frac{{A}_{55}}{r(x)}\frac{\partial {\varphi }_{\theta }}{\partial \theta }-{B}_{22}\frac{cos\alpha }{{r(x)}^{2}} \frac{\partial {\varphi }_{\theta }}{\partial \theta }-\frac{{A}_{12}cos\alpha }{r(x)} \frac{\partial w}{\partial x}\frac{\partial w}{\partial x}-\frac{{A}_{22}cos\alpha }{2{r(x)}^{3}} \frac{\partial w}{\partial \theta }\frac{\partial w}{\partial \theta }-\frac{{A}_{15}^{e}}{r(x)}\frac{{\partial }^{2}\phi }{\partial x\partial \theta }-\frac{{A}_{32}^{e}cos\alpha }{r(x)}\phi -\frac{{A}_{15}^{m}}{r(x)}\frac{{\partial }^{2}\psi }{\partial x\partial \theta }-\frac{{A}_{32}^{m}cos\alpha }{r(x)}\psi ={I}_{0}\frac{{\partial }^{2}w}{{\partial t}^{2}}$$
(49c)
$${B}_{11}\frac{{\partial }^{2}u}{{\partial x}^{2}}+\frac{{B}_{44}}{{r(x)}^{2}}\frac{{\partial }^{2}u}{{\partial \theta }^{2}}+\frac{{B}_{11}sin\alpha }{r(x)}\frac{\partial u}{\partial x}-{B}_{22}\frac{{sin}^{2}\alpha }{{r\left(x\right)}^{2}}u-\frac{\left({B}_{22}+{B}_{44}\right)sin\alpha }{{r\left(x\right)}^{2}}\frac{\partial v}{\partial \theta }+\frac{\left({B}_{12}+{B}_{44}\right)}{r\left(x\right)}\frac{{\partial }^{2}v}{\partial x\partial \theta }+{B}_{12}\frac{cos\alpha }{r\left(x\right)}\frac{\partial w}{\partial x}-{A}_{66}\frac{\partial w}{\partial x}-\frac{{B}_{22}\mathrm{sin}\alpha \mathrm{cos}\alpha }{{r\left(x\right)}^{2}}w+{D}_{11}\frac{{\partial }^{2}{\varphi }_{x}}{{\partial x}^{2}}+\frac{{D}_{44}}{{r\left(x\right)}^{2}}\frac{{\partial }^{2}{\varphi }_{x}}{{\partial \theta }^{2}}+\frac{{D}_{11}\mathrm{sin}\alpha }{r\left(x\right)}\frac{\partial {\varphi }_{x}}{\partial x}-\frac{{D}_{22}{sin}^{2}\alpha }{{r\left(x\right)}^{2}}{\varphi }_{x}-{A}_{66}{\varphi }_{x}-\frac{\left({D}_{44}+{D}_{22}\right)sin\alpha }{{r\left(x\right)}^{2}}\frac{\partial {\varphi }_{\theta }}{\partial \theta }+\frac{\left({D}_{12}+{D}_{44}\right)}{r\left(x\right)}\frac{{\partial }^{2}{\varphi }_{\theta }}{\partial x\partial \theta }+{B}_{11}\frac{{\partial }^{2}w}{{\partial x}^{2}}\frac{\partial w}{\partial x}-\frac{{B}_{22}sin\alpha }{{2r\left(x\right)}^{3}}\frac{\partial w}{\partial \theta }\frac{\partial w}{\partial \theta }+\frac{\left({B}_{11}-{B}_{12}\right)\mathrm{sin}\alpha }{2r\left(x\right)}\frac{\partial w}{\partial x}\frac{\partial w}{\partial x}+\frac{\left({B}_{12}+{B}_{44}\right)}{{r\left(x\right)}^{2}}\frac{{\partial }^{2}w}{\partial x\partial \theta }\frac{\partial w}{\partial \theta }+\frac{{B}_{44}}{{r\left(x\right)}^{2}}\frac{{\partial }^{2}w}{{\partial \theta }^{2}}\frac{\partial w}{\partial \theta }-{B}_{31}^{e}\frac{\partial \phi }{\partial x}-\frac{{B}_{24}^{e}}{r\left(x\right)}\frac{\partial \phi }{\partial \theta }-{B}_{31}^{e}\frac{sin\alpha }{r\left(x\right)}\phi +{B}_{32}^{e}\frac{sin\alpha }{r\left(x\right)}\phi -{B}_{31}^{m}\frac{\partial \psi }{\partial x}-\frac{{B}_{24}^{m}}{r\left(x\right)}\frac{\partial \psi }{\partial \theta }-{B}_{31}^{m}\frac{sin\alpha }{r\left(x\right)}\psi +{B}_{32}^{m}\frac{sin\alpha }{r\left(x\right)}\psi ={I}_{1}\frac{{\partial }^{2}u}{{\partial t}^{2}}+{I}_{2}\frac{{\partial }^{2}{\varphi }_{x}}{{\partial t}^{2}}$$
(49d)
$$\frac{\left({B}_{44}+{B}_{12}\right)}{r(x)}\frac{{\partial }^{2}u}{\partial x\partial \theta }+\frac{\left({B}_{44}+{B}_{22}\right)sin\alpha }{{r(x)}^{2}}\frac{\partial u}{\partial \theta }+{B}_{44}\frac{{\partial }^{2}v}{{\partial x}^{2}}+\frac{{B}_{22}}{{r(x)}^{2}}\frac{{\partial }^{2}v}{{\partial \theta }^{2}}+\frac{{B}_{44}\mathrm{sin}\alpha }{r(x)}\frac{\partial v}{\partial x}+\frac{{A}_{55}\mathrm{cos}\alpha }{r(x)}v+\frac{{B}_{22}\mathrm{cos}\alpha }{{r(x)}^{2}}\frac{\partial w}{\partial \theta }-\frac{{A}_{55}}{r\left(x\right)}\frac{\partial w}{\partial \theta }+\frac{\left({D}_{44}+{D}_{12}\right)}{r\left(x\right)}\frac{{\partial }^{2}{\varphi }_{x}}{\partial x\partial \theta }+\frac{\left({D}_{22}+{D}_{44}\right)\mathrm{sin}\alpha }{{r\left(x\right)}^{2}}\frac{\partial {\varphi }_{x}}{\partial \theta }+{D}_{44}\frac{{\partial }^{2}{\varphi }_{\theta }}{{\partial x}^{2}}+\frac{{D}_{22}}{{r\left(x\right)}^{2}}\frac{{\partial }^{2}{\varphi }_{\theta }}{{\partial \theta }^{2}}+\frac{{D}_{44}sin\alpha }{r\left(x\right)}\frac{\partial {\varphi }_{\theta }}{\partial x}-\frac{{D}_{44}{sin}^{2}\alpha }{{r\left(x\right)}^{2}}{\varphi }_{\theta }-{A}_{55}{\varphi }_{\theta }+\frac{{B}_{44}}{r\left(x\right)}\frac{{\partial }^{2}w}{{\partial x}^{2}}\frac{\partial w}{\partial \theta }+\frac{{B}_{22}}{{r\left(x\right)}^{3}}\frac{{\partial }^{2}w}{{\partial \theta }^{2}}\frac{\partial w}{\partial \theta }+\frac{\left({B}_{44}+{B}_{12}\right)}{r\left(x\right)}\frac{{\partial }^{2}w}{\partial x\partial \theta }\frac{\partial w}{\partial x}+\frac{{B}_{44}sin\alpha }{{r\left(x\right)}^{2}}\frac{\partial w}{\partial x}\frac{\partial w}{\partial \theta }-{B}_{24}^{e}\frac{\partial \phi }{\partial x}-\frac{{B}_{32}^{e}}{r\left(x\right)}\phi -\frac{2{B}_{24}^{e}sin\alpha }{r\left(x\right)}\phi +{A}_{15}^{e}\frac{\partial \phi }{\partial x}-{B}_{24}^{m}\frac{\partial \psi }{\partial x}-\frac{{B}_{32}^{m}}{r\left(x\right)}\psi -\frac{2{B}_{24}^{m}sin\alpha }{r\left(x\right)}\psi +{A}_{15}^{e}\frac{\partial \psi }{\partial x}={I}_{1}\frac{{\partial }^{2}v}{{\partial t}^{2}}+{I}_{2}\frac{{\partial }^{2}{\varphi }_{\theta }}{{\partial t}^{2}}$$
(49e)
$${-A}_{31}^{e}\frac{\partial u}{\partial x}-\frac{{A}_{32}^{e}sin\alpha }{r\left(x\right)}u-\frac{{A}_{32}^{e}}{r\left(x\right)}\frac{\partial v}{\partial \theta }-\frac{{A}_{32}^{e}cos\alpha }{r\left(x\right)}w-{B}_{31}^{e}\frac{\partial {\varphi }_{x}}{\partial x}-\frac{{B}_{32}^{e}sin\alpha }{r\left(x\right)}{\varphi }_{x}-\frac{{B}_{32}^{e}}{r\left(x\right)}\frac{\partial {\varphi }_{\theta }}{\partial \theta }-{A}_{31}^{e}\frac{1}{2}\frac{\partial w}{\partial x}\frac{\partial w}{\partial x}-\frac{{A}_{32}^{e}}{2{r\left(x\right)}^{2}}\frac{\partial w}{\partial \theta }\frac{\partial w}{\partial \theta }+{\widetilde{\kappa }}_{11}\frac{{\partial }^{2}\phi }{{\partial x}^{2}}+{\widetilde{\kappa }}_{22}\frac{{\partial }^{2}\phi }{{\partial \theta }^{2}}-{\widetilde{\kappa }}_{33}\phi +{\widetilde{\lambda }}_{11}\frac{{\partial }^{2}\psi }{{\partial x}^{2}}+{\widetilde{\lambda }}_{22}\frac{{\partial }^{2}\psi }{{\partial \theta }^{2}}-{\widetilde{\lambda }}_{33}\psi =0$$
(49f)
$${-A}_{31}^{m}\frac{\partial u}{\partial x}-\frac{{A}_{32}^{m}sin\alpha }{r\left(x\right)}u-\frac{{A}_{32}^{m}}{r\left(x\right)}\frac{\partial v}{\partial \theta }-\frac{{A}_{32}^{m}cos\alpha }{r\left(x\right)}w-{B}_{31}^{m}\frac{\partial {\varphi }_{x}}{\partial x}-\frac{{B}_{32}^{m}sin\alpha }{r\left(x\right)}{\varphi }_{x}-\frac{{B}_{32}^{m}}{r\left(x\right)}\frac{\partial {\varphi }_{\theta }}{\partial \theta }-{A}_{31}^{m}\frac{1}{2}\frac{\partial w}{\partial x}\frac{\partial w}{\partial x}-\frac{{A}_{32}^{m}}{2{r\left(x\right)}^{2}}\frac{\partial w}{\partial \theta }\frac{\partial w}{\partial \theta }+{\widetilde{\lambda }}_{11}\frac{{\partial }^{2}\phi }{{\partial x}^{2}}+{\widetilde{\lambda }}_{22}\frac{{\partial }^{2}\phi }{{\partial \theta }^{2}}-{\widetilde{\lambda }}_{33}\phi +{\widetilde{\mu }}_{11}\frac{{\partial }^{2}\psi }{{\partial x}^{2}}+{\widetilde{\mu }}_{22}\frac{{\partial }^{2}\psi }{{\partial \theta }^{2}}-{\widetilde{\mu }}_{33}\psi =0$$
(49g)

The following boundary conditions are also obtained:

  • Clamped boundary conditions:

$$ u = v = w = \varphi_{x} = \varphi_{\theta } = 0{ }\quad x = 0,x = L $$
(50a)
$$ u = v = w = \varphi_{x} = \varphi_{\theta } = 0{ }\quad {\uptheta } = 0,\theta = \theta_{0} $$
(50b)
  • Simply supported boundary condition:

    $$ A_{11} \frac{\partial u}{{\partial x}} + B_{11} \frac{{\partial \varphi_{x} }}{\partial x} + A_{12} \frac{sin\alpha }{{a_{0} }}u + B_{12} \frac{sin\alpha }{{a_{0} }}\varphi_{x} = 0{ }\quad x = 0,\;x = L $$
    $$ B_{11} \frac{\partial u}{{\partial x}} + D_{11} \frac{{\partial \varphi_{x} }}{\partial x} + B_{12} \frac{sin\alpha }{{a_{0} }}u + D_{12} \frac{sin\alpha }{{a_{0} }}\varphi_{x} = 0 $$
    (50a)
    $$ A_{22} \frac{1}{r\left( x \right)}\frac{\partial v}{{\partial \theta }} + B_{22} \frac{1}{r\left( x \right)}\frac{{\partial \varphi_{\theta } }}{\partial \theta } = 0\quad {\uptheta } = 0,\theta = \theta_{0} $$
    $$ B_{22} \frac{1}{r\left( x \right)}\frac{\partial v}{{\partial \theta }} + D_{22} \frac{1}{r\left( x \right)}\frac{{\partial \varphi_{\theta } }}{\partial \theta } = 0 $$
    (51b)

Appendix D

$${A}_{11}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(2\right)} {U}_{nj}\right)+\frac{{A}_{11}sin\alpha }{r(x)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {U}_{nj}\right)-\frac{{A}_{22}{sin}^{2}\alpha }{{r\left(x\right)}^{2}}\left({U}_{ij}\right)+\frac{{A}_{44}}{r{\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {U}_{im}\right)-\frac{\left({A}_{44}+{A}_{22}\right)sin\alpha }{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {V}_{im}\right)+\frac{\left({A}_{12}+{A}_{44}\right)}{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{\theta }}{A}_{in}^{x\left(1\right)}{A}_{jm}^{\theta \left(1\right)} {V}_{nm}\right)+\frac{{A}_{12}cos\alpha }{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {W}_{nj}\right)-\frac{{A}_{12}sin\alpha cos\alpha }{{r\left(x\right)}^{2}}\left({U}_{ij}\right)+{B}_{11}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(2\right)} {{\phi }_{x}}_{nj}\right)+\frac{{B}_{11}sin\alpha }{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {{\phi }_{x}}_{nj}\right)+\frac{{B}_{44}}{r{\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {{\phi }_{x}}_{im}\right)-\frac{{{B}_{22}sin}^{2}\alpha }{{r\left(x\right)}^{2}}\left({{\phi }_{x}}_{ij}\right)-\frac{\left({B}_{44}+{B}_{22}\right)sin\alpha }{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {{\phi }_{\theta }}_{im}\right)+\frac{\left({B}_{44}+{B}_{12}\right)}{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{\theta }}{A}_{in}^{x\left(1\right)}{A}_{jm}^{\theta \left(1\right)} {{\phi }_{\theta }}_{nm}\right)+{A}_{11}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(2\right)} {W}_{nj}\right)\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {W}_{nj}\right)+\frac{\left({A}_{11}-{A}_{12}\right)sin\alpha }{2r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {W}_{nj}\right)\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {W}_{nj}\right)+\frac{{A}_{44}}{r{\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{im}^{\theta \left(2\right)} {W}_{mj}\right)\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {W}_{nj}\right)-\frac{{A}_{12}sin\alpha }{r{\left(x\right)}^{3}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{im}^{\theta \left(1\right)} {W}_{mj}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{im}^{\theta \left(1\right)} {W}_{mj}\right)-\frac{\left({A}_{12}-{A}_{22}\right)sin\alpha }{2r{\left(x\right)}^{3}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{im}^{\theta \left(1\right)} {W}_{mj}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{im}^{\theta \left(1\right)} {W}_{mj}\right)+\frac{\left({A}_{12}+{A}_{44}\right)}{r{\left(x\right)}^{2}}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{\theta }}{A}_{in}^{x\left(1\right)}{A}_{jm}^{\theta \left(1\right)} {W}_{nm}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{im}^{\theta \left(1\right)} {W}_{mj}\right)-{A}_{31}^{e}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {\Phi }_{nj}\right)-\frac{{A}_{24}^{e}}{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{im}^{\theta \left(1\right)} {\Phi }_{mj}\right)+\frac{\left(-{A}_{31}^{e}+{A}_{32}^{e}\right)sin\alpha }{r\left(x\right)}\left({\Phi }_{ij}\right)-{A}_{31}^{m}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {\Psi }_{nj}\right)-\frac{{A}_{24}^{m}}{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{im}^{\theta \left(1\right)} {\Psi }_{mj}\right)+\frac{\left(-{A}_{31}^{m}+{A}_{32}^{m}\right)sin\alpha }{r\left(x\right)}\left({\Psi }_{ij}\right)=-{\omega }^{2}{(I}_{0}{U}_{ij}+{I}_{1}{{\phi }_{x}}_{ij})$$
(52a)
$$\frac{\left({A}_{44}+{A}_{22}\right)sin\alpha }{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {U}_{im}\right)+\frac{\left({A}_{44}+{A}_{12}\right)}{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {U}_{nm}\right)+{A}_{44}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {V}_{nj}\right)+\frac{{A}_{22}}{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {V}_{im}\right)+\frac{{A}_{44}sin\alpha }{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {V}_{nj}\right)-\frac{{A}_{44}{sin}^{2}\alpha }{{r\left(x\right)}^{2}}\left({V}_{ij}\right)-\frac{{A}_{55}{cos}^{2}\alpha }{{r\left(x\right)}^{2}}\left({V}_{ij}\right)+\frac{\left({A}_{22}+{A}_{55}\right)cos\alpha }{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {W}_{im}\right)-\frac{\left({B}_{44}+{B}_{22}\right)sin\alpha }{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {{\phi }_{x}}_{im}\right)+\frac{\left({B}_{44}+{B}_{12}\right)}{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {{\phi }_{x}}_{nm}\right)+{B}_{44}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {{\phi }_{\theta }}_{nj}\right)+\frac{{B}_{22}}{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {{\phi }_{\theta }}_{im}\right)+\frac{{B}_{44}sin\alpha }{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {{\phi }_{\theta }}_{im}\right)+{A}_{55}\frac{cos\alpha }{r\left(x\right)} \left({{\phi }_{\theta }}_{ij}\right)- \frac{{B}_{44}{sin}^{2}\alpha }{{r\left(x\right)}^{2}}\left({{\phi }_{\theta }}_{ij}\right)+\frac{{A}_{44}}{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {W}_{nj}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {W}_{im}\right)+ \frac{{A}_{44}sin\alpha }{{r\left(x\right)}^{2}}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{nj}\right)\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{nj}\right)+\frac{{A}_{22}}{{r\left(x\right)}^{3}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {W}_{im}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {W}_{im}\right)+\frac{\left({A}_{44}+{A}_{12}\right)}{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {W}_{nm}\right)\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{nj}\right)-\frac{{A}_{32}^{e}}{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\Phi }_{im}\right)- {A}_{24}^{e}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {\Phi }_{nm}\right)-\frac{2{A}_{24}^{e}sin\alpha }{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\Phi }_{im}\right)-{A}_{15}^{e}\frac{cos\alpha }{r(x)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\Phi }_{nj}\right)-\frac{{A}_{32}^{m}}{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\Psi }_{im}\right)- {A}_{24}^{m}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {\Psi }_{nm}\right)-\frac{2{A}_{24}^{m}sin\alpha }{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\Psi }_{im}\right)-{A}_{15}^{m}\frac{cos\alpha }{r(x)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\Psi }_{nj}\right)=-{\omega }^{2}{(I}_{0}{V}_{ij}+{I}_{1}{{\phi }_{\theta }}_{ij})$$
(52b)
$$-{A}_{12}\frac{cos\alpha }{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {U}_{nj}\right)- \frac{{A}_{22}sin\alpha cos\alpha }{{r\left(x\right)}^{2}}\left({U}_{ij}\right)-\frac{{A}_{22}cos\alpha }{{r\left(x\right)}^{2}} \left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {V}_{im}\right)-\frac{{A}_{55}cos\alpha }{{r\left(x\right)}^{2}} \left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {V}_{im}\right)+{A}_{66}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(2\right)} {W}_{nj}\right)+{A}_{66}\frac{sin\alpha }{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {W}_{nj}\right)+\frac{{A}_{55}}{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {W}_{im}\right)-\frac{{A}_{22}{cos}^{2}\alpha }{{r\left(x\right)}^{2}} \left({W}_{ij}\right)+{A}_{66}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {{\phi }_{x}}_{nj}\right)-{B}_{12}\frac{cos\alpha }{r\left(x\right)} \left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x\left(1\right)} {{\phi }_{x}}_{nj}\right)+{A}_{66}\frac{sin\alpha }{r(x)}\left({{\phi }_{x}}_{ij}\right)-\frac{{B}_{22}sin\alpha cos\alpha }{{r(x)}^{2}} \left({{\phi }_{x}}_{ij}\right)+\frac{{A}_{55}}{r(x)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {{\phi }_{\theta }}_{im}\right)-{B}_{22}\frac{cos\alpha }{{r(x)}^{2}} \left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {{\phi }_{\theta }}_{im}\right)-\frac{{A}_{12}cos\alpha }{r(x)} \left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{nj}\right)\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{nj}\right)-\frac{{A}_{22}cos\alpha }{2{r(x)}^{3}} \left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {W}_{im}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {W}_{im}\right)-\frac{{A}_{15}^{e}}{r(x)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {\Phi }_{nm}\right)-\frac{{A}_{32}^{e}cos\alpha }{r(x)}\left({\Phi }_{ij}\right)-\frac{{A}_{15}^{m}}{r(x)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {\Psi }_{nm}\right)-\frac{{A}_{32}^{m}cos\alpha }{r(x)}\left({\Psi }_{ij}\right) ={-I}_{0}{\omega }^{2}{W}_{ij}$$
(52c)
$${B}_{11}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {U}_{nj}\right)+\frac{{B}_{44}}{{r(x)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {U}_{im}\right)+\frac{{B}_{11}sin\alpha }{r(x)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {U}_{nj}\right)-{B}_{22}\frac{{sin}^{2}\alpha }{{r\left(x\right)}^{2}}\left({U}_{ij}\right)-\frac{\left({B}_{22}+{B}_{44}\right)sin\alpha }{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {V}_{im}\right)+\frac{\left({B}_{12}+{B}_{44}\right)}{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {V}_{nm}\right)+{B}_{12}\frac{cos\alpha }{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{nj}\right)-{A}_{66}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{nj}\right)-\frac{{B}_{22}\mathrm{sin}\alpha \mathrm{cos}\alpha }{{r\left(x\right)}^{2}}\left({W}_{ij}\right)+{D}_{11}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {{\phi }_{x}}_{nj}\right)+\frac{{D}_{44}}{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {{\phi }_{x}}_{im}\right)+\frac{{D}_{11}\mathrm{sin}\alpha }{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {{\phi }_{x}}_{nj}\right)-\frac{{D}_{22}{sin}^{2}\alpha }{{r\left(x\right)}^{2}}\left({{\phi }_{x}}_{ij}\right)-{A}_{66}\left({{\phi }_{x}}_{ij}\right)-\frac{\left({D}_{44}+{D}_{22}\right)sin\alpha }{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {{\phi }_{\theta }}_{im}\right)+\frac{\left({D}_{12}+{D}_{44}\right)}{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {{\phi }_{\theta }}_{nm}\right)+{B}_{11}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {W}_{nj}\right)\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{nj}\right)-\frac{{B}_{22}sin\alpha }{{2r\left(x\right)}^{3}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {W}_{im}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {W}_{im}\right)+\frac{\left({B}_{11}-{B}_{12}\right)\mathrm{sin}\alpha }{2r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{nj}\right)\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{nj}\right)+\frac{\left({B}_{12}+{B}_{44}\right)}{{r\left(x\right)}^{2}}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {W}_{nm}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {W}_{im}\right)+\frac{{B}_{44}}{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {W}_{im}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {W}_{im}\right)-{B}_{31}^{e}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\Phi }_{nj}\right)-\frac{{B}_{24}^{e}}{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\Phi }_{im}\right)-{B}_{31}^{e}\frac{sin\alpha }{r\left(x\right)}\left({\Phi }_{ij}\right)+{B}_{32}^{e}\frac{sin\alpha }{r\left(x\right)}\left({\Phi }_{ij}\right)-{B}_{31}^{m}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\Psi }_{in}\right)-\frac{{B}_{24}^{m}}{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\Psi }_{im}\right)-{B}_{31}^{m}\frac{sin\alpha }{r\left(x\right)}\left({\Psi }_{ij}\right)+{B}_{32}^{m}\frac{sin\alpha }{r\left(x\right)}\left({\Psi }_{ij}\right)=-{\omega }^{2}\left({I}_{1}{U}_{ij}+{I}_{2}{{\phi }_{x}}_{ij}\right)$$
(52d)
$$\frac{\left({B}_{44}+{B}_{12}\right)}{r(x)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {U}_{nm}\right)+\frac{\left({B}_{44}+{B}_{22}\right)sin\alpha }{{r(x)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{U}}_{im}\right)+{B}_{44}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {\mathrm{V}}_{in}\right)+\frac{{B}_{22}}{{r(x)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {\mathrm{V}}_{im}\right)+\frac{{B}_{44}\mathrm{sin}\alpha }{r(x)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\mathrm{V}}_{in}\right)+\frac{{A}_{55}\mathrm{cos}\alpha }{r(x)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\mathrm{V}}_{in}\right)+\frac{{B}_{22}\mathrm{cos}\alpha }{{r(x)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{W}}_{im}\right)-\frac{{A}_{55}}{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{W}}_{im}\right)+\frac{\left({D}_{44}+{D}_{12}\right)}{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {{\phi }_{x}}_{nm}\right)+\frac{\left({D}_{22}+{D}_{44}\right)\mathrm{sin}\alpha }{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {{\phi }_{x}}_{im}\right)+{D}_{44}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {{\phi }_{\theta }}_{in}\right)+\frac{{D}_{22}}{{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {{\phi }_{\theta }}_{im}\right)+\frac{{D}_{44}sin\alpha }{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {{\phi }_{\theta }}_{in}\right)-\frac{{D}_{44}{sin}^{2}\alpha }{{r\left(x\right)}^{2}}\left({{\phi }_{\theta }}_{ij}\right)-{A}_{55}\left({{\phi }_{\theta }}_{ij}\right)+\frac{{B}_{44}}{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {\mathrm{W}}_{in}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{W}}_{im}\right)+\frac{{B}_{22}}{{r\left(x\right)}^{3}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {\mathrm{W}}_{im}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{W}}_{im}\right)+\frac{\left({B}_{44}+{B}_{12}\right)}{r\left(x\right)}\left(\sum_{n=1}^{{N}_{x}}\sum_{m=1}^{{N}_{y}}{A}_{in}^{x(1)}{A}_{jm}^{\theta (1)} {W}_{nm}\right)\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\mathrm{W}}_{in}\right)+\frac{{B}_{44}sin\alpha }{{r\left(x\right)}^{2}}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\mathrm{W}}_{in}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{W}}_{im}\right)-{B}_{24}^{e}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\Phi }_{in}\right)-\frac{{B}_{32}^{e}}{r\left(x\right)}\left({\Phi }_{ij}\right)-\frac{2{B}_{24}^{e}sin\alpha }{r\left(x\right)}\left({\Phi }_{ij}\right)+{A}_{15}^{e}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {\Phi }_{in}\right)-{B}_{24}^{m}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\Psi }_{in}\right)-\frac{{B}_{32}^{m}}{r\left(x\right)}\left({\Psi }_{ij}\right)-\frac{2{B}_{24}^{m}sin\alpha }{r\left(x\right)}\left({\Psi }_{ij}\right)+{A}_{15}^{e}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\Psi }_{in}\right)=-{\omega }^{2}\left({I}_{1}{V}_{ij}+{I}_{2}{{\phi }_{\theta }}_{ij}\right)$$
(52e)
$${-A}_{31}^{e}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\mathrm{U}}_{in}\right)-\frac{{A}_{32}^{e}sin\alpha }{r\left(x\right)}\left({U}_{ij}\right)-\frac{{A}_{32}^{e}}{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{V}}_{im}\right)-\frac{{A}_{32}^{e}cos\alpha }{r\left(x\right)}\left({W}_{ij}\right)-{B}_{31}^{e}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {{\phi }_{x}}_{in}\right)-\frac{{B}_{32}^{e}sin\alpha }{r\left(x\right)}\left({{\phi }_{x}}_{ij}\right)-\frac{{B}_{32}^{e}}{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {{\phi }_{\theta }}_{im}\right)-{A}_{31}^{e}\frac{1}{2}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{in}\right)\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{in}\right)-\frac{{A}_{32}^{e}}{2{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{W}}_{im}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{W}}_{im}\right)+{\widetilde{\kappa }}_{11}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {\Phi }_{in}\right)+{\widetilde{\kappa }}_{22}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {\Phi }_{im}\right)-{\widetilde{\kappa }}_{33}\left({\Phi }_{ij}\right)+{\widetilde{\lambda }}_{11}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {\Psi }_{in}\right)+{\widetilde{\lambda }}_{22}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {\Psi }_{im}\right)-{\widetilde{\lambda }}_{33}\left({\Psi }_{ij}\right)=0$$
(52f)
$${-A}_{31}^{m}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {\mathrm{U}}_{in}\right)-\frac{{A}_{32}^{m}sin\alpha }{r\left(x\right)}\left({U}_{ij}\right)-\frac{{A}_{32}^{m}}{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{V}}_{im}\right)-\frac{{A}_{32}^{m}cos\alpha }{r\left(x\right)}\left({W}_{ij}\right)-{B}_{31}^{m}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {{\phi }_{x}}_{in}\right)-\frac{{B}_{32}^{m}sin\alpha }{r\left(x\right)}\left({{\phi }_{x}}_{ij}\right)-\frac{{B}_{32}^{m}}{r\left(x\right)}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {{\phi }_{\theta }}_{im}\right)-{A}_{31}^{m}\frac{1}{2}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{in}\right)\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(1)} {W}_{in}\right)-\frac{{A}_{32}^{m}}{2{r\left(x\right)}^{2}}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{W}}_{im}\right)\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(1\right)} {\mathrm{W}}_{im}\right)+{\widetilde{\lambda }}_{11}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {\Phi }_{in}\right)+{\widetilde{\lambda }}_{22}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {\Phi }_{im}\right)-{\widetilde{\lambda }}_{33}\left({\Phi }_{ij}\right)+{\widetilde{\mu }}_{11}\left(\sum_{n=1}^{{N}_{x}}{A}_{in}^{x(2)} {\Psi }_{in}\right)+{\widetilde{\mu }}_{22}\left(\sum_{m=1}^{{N}_{\theta }}{A}_{jm}^{\theta \left(2\right)} {\Psi }_{im}\right)-{\widetilde{\mu }}_{33}\left({\Psi }_{ij}\right)=0$$
(52g)

The superscripts (1) and (2) in the weight coefficients of the above equations indicate the estimation of the first and second derivatives of the functions. In the following, it is used to convert the above equations into a matrix form by using the concept of double multiplication of Kronecker and Hadamard. By using these two types of multiplication, the nonlinear coupled equations are expressed as follows:

$${A}_{11}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(2)}}\right)\overrightarrow{U}+{A}_{11}sin\alpha \left(\overrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{U}-{A}_{22}{sin}^{2}\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{U}+{A}_{44}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overline{U }-\left({A}_{44}+{A}_{22}\right)sin\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{V}+\left({A}_{12}+{A}_{44}\right)\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{V}+{A}_{12}cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}-{A}_{12}sin\alpha cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{W}+{B}_{11}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(2)}}\right){\overrightarrow{\phi }}_{x}+{B}_{11}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(2)}}\right){\overrightarrow{\phi }}_{x}+{B}_{44}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{2}}\right){\overline{\phi }}_{x}-{B}_{22}{sin}^{2}\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{x}-\left({B}_{44}+{B}_{22}\right)sin\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{\theta }+\left({B}_{12}+{B}_{44}\right)\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right){\overrightarrow{\phi }}_{\theta }+{A}_{11}\left[\left(\overleftrightarrow{{I}^{\theta }}\otimes {a}_{1}\overleftrightarrow{{A}^{x(2)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\right]+0.5\left({A}_{11}-{A}_{12}\right)sin\alpha \left[\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\right]+{A}_{44}\left[\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\right]-{A}_{12}sin\alpha \left[\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{3}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\right]-0.5\left({A}_{12}-{A}_{22}\right)sin\alpha \left[\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{3}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]+\left({A}_{12}+{A}_{44}\right)\left[\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]-{A}_{31}^{e}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Phi }-{A}_{24}^{e}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Phi }+\left(-{A}_{31}^{e}+{A}_{32}^{e}\right)\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Phi } -{A}_{31}^{m}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Psi }-{A}_{24}^{m}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Psi }+\left(-{A}_{31}^{m}+{A}_{32}^{m}\right)\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Psi }=-{\omega }^{2}\left[{I}_{0}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{U}+{I}_{1}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right){\overrightarrow{\phi }}_{x}\right]$$
(53a)
$$\left({A}_{22}+{A}_{44}\right)sin\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{U}+\left({A}_{12}+{A}_{44}\right)\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{U}+{A}_{44}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(2)}}\right)\overrightarrow{V}+{A}_{22}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{V}+{A}_{44}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{V}-{A}_{44}{sin}^{2}\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{V}-{A}_{55}{cos}^{2}\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{V}+\left({A}_{22}+{A}_{55}\right)cos\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{W}+\left({B}_{22}+{B}_{44}\right)sin\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{x}+\left({B}_{12}+{B}_{44}\right)\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x}}\right){\overrightarrow{\phi }}_{x}+{B}_{44}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right){\overrightarrow{\phi }}_{\theta }+{B}_{22}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{\theta }+{B}_{44}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right){\overrightarrow{\phi }}_{\theta }-{B}_{44}{sin}^{2}\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{\theta }+{A}_{55}cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right){\overrightarrow{\phi }}_{\theta }+{A}_{44}\left[\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(2)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]+{A}_{44}sin\alpha \left[\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\overleftrightarrow{{A}^{x(1)}}\right)\overleftrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]+{A}_{22}\left[\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{3}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]+\left({A}_{44}+{A}_{12}\right)\left[\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overline{W }\right]-{A}_{32}^{e}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Phi }-{A}_{24}^{e}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Phi }-2{A}_{24}^{e}sin\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Phi }-{A}_{15}^{e}cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Phi }-{A}_{32}^{m}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Psi }-{A}_{24}^{m}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Psi }-2{A}_{24}^{m}sin\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Psi }-{A}_{15}^{m}cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Psi }=-{\omega }^{2}\left[{I}_{0}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{V}+{I}_{1}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right){\overrightarrow{\phi }}_{\theta }\right]$$
(53b)
$$-{A}_{12}cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{U}-{A}_{22}sin\alpha cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{U}-{A}_{22}cos\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{V}-{A}_{55}cos\alpha \left(\overleftrightarrow{{A}^{\theta \left(1\right)}}\otimes \overleftrightarrow{{a}_{2}}\right)+{A}_{66}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}-{A}_{66}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x}}\right)\overrightarrow{W}+{A}_{55}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{W}-{A}_{22}{cos}^{2}\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{W}+{A}_{66}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right){\overrightarrow{\phi }}_{x}-{B}_{12}cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right){\overrightarrow{\phi }}_{x}-{A}_{66}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right){\overrightarrow{\phi }}_{x}-{B}_{22}sin\alpha cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{x}+{A}_{55}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\right){\overrightarrow{\phi }}_{\theta }-{B}_{22}cos\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{\theta }-0.5{A}_{12}cos\alpha \left[\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\right]-0.5{A}_{22}cos\alpha \left[\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{3}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]-{A}_{15}^{e}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Phi }-{A}_{32}^{e}cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Phi }-{A}_{15}^{m}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Psi }-{A}_{32}^{m}cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Psi }=-{\omega }^{2}{I}_{0}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}$$
(53c)
$${B}_{11}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{U}+{B}_{44}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{U}+{B}_{11}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{U}-{B}_{22}{sin}^{2}\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{U}-\left({B}_{44}+{B}_{22}\right)sin\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{V}+\left({B}_{12}+{B}_{44}\right)\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{V}+{B}_{12}cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}-{A}_{66}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}-{B}_{22}cos\alpha sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{W}+{D}_{11}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(2)}}\right){\overrightarrow{\phi }}_{x}+{D}_{44}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{x}+{D}_{11}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right){\overrightarrow{\phi }}_{x}-{D}_{22}{sin}^{2}\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{x}-{A}_{66}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right){\overrightarrow{\phi }}_{x}-\left({D}_{44}+{D}_{22}\right)\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{\theta }+\left({D}_{12}+{D}_{44}\right)\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right){\overrightarrow{\phi }}_{\theta }+{B}_{11}\left[\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(2)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\right]+\left({B}_{12}+{B}_{22}\right)0.5sin\alpha \left[\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{3}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]+0.5\left({B}_{11}-{B}_{12}\right)\left[\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\right]+\left({B}_{12}+{B}_{44}\right)\left[\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]+{B}_{44}\left[\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\right]+{B}_{31}^{e}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Phi }-{B}_{24}^{e}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Phi }+\left({B}_{32}^{e}-{B}_{31}^{e}\right)sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Phi }+{B}_{31}^{m}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Psi }-{B}_{24}^{m}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Psi }+\left({B}_{32}^{m}-{B}_{31}^{m}\right)sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Psi }=-{\omega }^{2}\left[{I}_{1}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{U}+{I}_{2}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right){\overrightarrow{\phi }}_{x}\right]$$
(53d)
$$\left({B}_{44}+{B}_{12}\right)]\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{U}+\left({B}_{22}+{B}_{44}\right)sin\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{U}+{B}_{44}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(2)}}\right)\overrightarrow{V}+{B}_{22}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{2}}\right)+{B}_{44}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{V}-{B}_{44}{sin}^{2}\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{V}+{A}_{55}cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{V}+{B}_{22}cos\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{W}-{A}_{55}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{W}+\left({D}_{44}+{D}_{12}\right)\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right){\overrightarrow{\phi }}_{x}+\left({D}_{22}+{D}_{44}\right)sin\alpha \left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{x}+{D}_{44}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(2)}}\right){\overrightarrow{\phi }}_{\theta }+{D}_{22}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{\theta }+{D}_{44}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right){\overrightarrow{\phi }}_{\theta }-{D}_{44}{sin}^{2}\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\right){\overrightarrow{\phi }}_{\theta }-{A}_{55}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right){\overrightarrow{\phi }}_{\theta }+{B}_{44}\left[\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(2)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]+{B}_{22}\left[\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{a}_{3}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]+\left({B}_{44}+{B}_{12}\right)\left[\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\right]+{B}_{44}sin\alpha \left[\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{2}}\overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]+\left({A}_{15}^{e}-{A}_{24}^{e}\right)\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Phi }-{B}_{32}^{e}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Phi }-2{B}_{24}^{e}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Phi } +\left({A}_{15}^{m}-{A}_{24}^{m}\right)\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{\Psi }-{B}_{32}^{m}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Psi }-2{B}_{24}^{m}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{\Psi }=-{\omega }^{2}\left[{I}_{1}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{V}+{I}_{2}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right){\overrightarrow{\phi }}_{\theta }\right]$$
(53e)
$$-{A}_{31}^{e}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{U}-{A}_{32}^{e}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{U}-{A}_{32}^{e}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes {a}_{1}\right)\overrightarrow{V}-{A}_{32}^{e}cos\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right)\overrightarrow{W}-{B}_{31}^{e}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right){\overrightarrow{\phi }}_{x}-{B}_{32}^{e}sin\alpha \left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{a}_{1}}\right){\overrightarrow{\phi }}_{x}-{B}_{32}^{e}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{1}}\right){\overrightarrow{\phi }}_{\theta }-0.5{A}_{31}^{e}\left[\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(1)}}\right)\overrightarrow{W}\right]-0.5{A}_{32}^{e}\left[\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{a}_{2}}\right)\overrightarrow{W}\mathrm{o}\left(\overleftrightarrow{{A}^{\theta (1)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{W}\right]+{\widetilde{\kappa }}_{11}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(2)}}\right)\overrightarrow{\Phi }+{\widetilde{\kappa }}_{22}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{\Phi }-{\widetilde{\kappa }}_{33}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{\Phi }+{\widetilde{\lambda }}_{11}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{A}^{x(2)}}\right)\overrightarrow{\Psi }+{\widetilde{\lambda }}_{22}\left(\overleftrightarrow{{A}^{\theta (2)}}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{\Psi }-{\widetilde{\lambda }}_{33}\left(\overleftrightarrow{{I}^{\theta }}\otimes \overleftrightarrow{{I}^{x}}\right)\overrightarrow{\Psi }=0$$
(53f)

In the above equations, the superscript \(\left(\overleftrightarrow{}\right)\) represents the two-dimensional tensor, and the superscript \(\left(\overrightarrow{}\right)\) represents the one-dimensional tensor. Further, Eqs. (53a–f) can be expressed in the matrix form of the following nonlinear eigenvalue problem:

$$\overleftrightarrow{K}\overrightarrow{S}={\omega }^{2}\overleftrightarrow{M}\overrightarrow{S} , \overleftrightarrow{K}=\left({\overleftrightarrow{K}}_{L}+{\overleftrightarrow{K}}_{NL}\right)$$
(54)

where \({\overleftrightarrow{K}}_{L}\) is the two-dimensional linear stiffness tensor, and \({\overleftrightarrow{K}}_{NL}\) is the two-dimensional nonlinear stiffness tensor which is a function of \(W\), and \(\overleftrightarrow{M}\) is the two-dimensional mass tensor that can be expressed as follows:

$${\overleftrightarrow{K}}_{L}=\left[\begin{array}{ccccccc}{\overleftrightarrow{K}}_{L11}&\quad {\overleftrightarrow{K}}_{L12}&\quad {\overleftrightarrow{K}}_{L13}&\quad {\overleftrightarrow{K}}_{L14}&\quad {\overleftrightarrow{K}}_{L15}& \quad{\overleftrightarrow{K}}_{L16}&\quad {\overleftrightarrow{K}}_{L17}\\ {\overleftrightarrow{K}}_{L21}&\quad {\overleftrightarrow{K}}_{L22}&\quad {\overleftrightarrow{K}}_{L23}&\quad {\overleftrightarrow{K}}_{L24}&\quad {\overleftrightarrow{K}}_{L25}&\quad {\overleftrightarrow{K}}_{L26}&\quad {\overleftrightarrow{K}}_{L27}\\ {\overleftrightarrow{K}}_{L31}&\quad {\overleftrightarrow{K}}_{L32}&\quad {\overleftrightarrow{K}}_{L33}&\quad {\overleftrightarrow{K}}_{L34}&\quad {\overleftrightarrow{K}}_{L35}&\quad {\overleftrightarrow{K}}_{L36}&\quad {\overleftrightarrow{K}}_{L37}\\ {\overleftrightarrow{K}}_{L41}&\quad {\overleftrightarrow{K}}_{L42}&\quad {\overleftrightarrow{K}}_{L43}&\quad {\overleftrightarrow{K}}_{L44}&\quad {\overleftrightarrow{K}}_{L45}&\quad {\overleftrightarrow{K}}_{L46}&\quad {\overleftrightarrow{K}}_{L47}\\ {\overleftrightarrow{K}}_{L51}&\quad {\overleftrightarrow{K}}_{L52}&\quad {\overleftrightarrow{K}}_{L53}&\quad {\overleftrightarrow{K}}_{L54}&\quad {\overleftrightarrow{K}}_{L55}&\quad {\overleftrightarrow{K}}_{L56}&\quad {\overleftrightarrow{K}}_{L57}\\ {\overleftrightarrow{K}}_{L61}&\quad {\overleftrightarrow{K}}_{L62}&\quad {\overleftrightarrow{K}}_{L63}&\quad {\overleftrightarrow{K}}_{L64}&\quad {\overleftrightarrow{K}}_{L65}&\quad {\overleftrightarrow{K}}_{L66}&\quad {\overleftrightarrow{K}}_{L67}\\ {\overleftrightarrow{K}}_{L71}&\quad {\overleftrightarrow{K}}_{L72}&\quad {\overleftrightarrow{K}}_{L73}&\quad {\overleftrightarrow{K}}_{L74}&\quad {\overleftrightarrow{K}}_{L75}&\quad {\overleftrightarrow{K}}_{L76}&\quad {\overleftrightarrow{K}}_{L77}\end{array}\right]$$
$${\overleftrightarrow{K}}_{NL} =\left[\begin{array}{ccccccc}\overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad {\overleftrightarrow{K}}_{NL13}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}& \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\\ \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad {\overleftrightarrow{K}}_{NL23}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\\ \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}& \quad {\overleftrightarrow{K}}_{NL24}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\\ \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad {\overleftrightarrow{K}}_{NL25}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\\ \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad {\overleftrightarrow{K}}_{NL26}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\\ \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad {\overleftrightarrow{K}}_{NL27}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\\ \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad {\overleftrightarrow{K}}_{NL28}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}& \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\end{array}\right]$$
$$\overleftrightarrow{M} =\left[\begin{array}{ccccccc}{\overleftrightarrow{M}}_{11}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad {\overleftrightarrow{M}}_{14}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}& \quad\overleftrightarrow{Z}\\ \overleftrightarrow{Z}&\quad {\overleftrightarrow{M}}_{22}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad {\overleftrightarrow{M}}_{25}&\quad \overleftrightarrow{Z}& \overleftrightarrow{Z}\\ \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad {\overleftrightarrow{M}}_{33}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\\ {\overleftrightarrow{M}}_{41}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad {\overleftrightarrow{M}}_{44}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\\ \overleftrightarrow{Z}&\quad {\overleftrightarrow{M}}_{52}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad {\overleftrightarrow{M}}_{55}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\\ \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\\ \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}&\quad \overleftrightarrow{Z}\end{array}\right], \overrightarrow{S}=\left\{\begin{array}{c}\overrightarrow{U}\\ \overrightarrow{V}\\ \overrightarrow{W}\\ {\overrightarrow{\phi }}_{X}\\ {\overrightarrow{\phi }}_{\theta }\\ \overrightarrow{\Phi }\\ \overrightarrow{\Psi }\end{array}\right\}$$
(55)

In order to apply the boundary conditions at the boundary points of the problem, the boundary conditions are expressed as follows:

$$\overleftrightarrow{T}\overrightarrow{S}=\left\{0\right\}$$
(56)

where \(\overleftrightarrow{T}\) is expressed as follows:

$$\overleftrightarrow{T}=\left[\begin{array}{cccccc}{\overleftrightarrow{T}}_{11}& {\overleftrightarrow{T}}_{12}& \cdots & \cdots & \cdots & {\overleftrightarrow{T}}_{17}\\ {\overleftrightarrow{T}}_{21}& {\overleftrightarrow{T}}_{22}& \cdots & \cdots & \cdots & {\overleftrightarrow{T}}_{27}\\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & \vdots & & & & \vdots \\ \vdots & \vdots & & & & \vdots \\ {\overleftrightarrow{T}}_{141}& {\overleftrightarrow{T}}_{142}& \cdots & \cdots & \cdots & {\overleftrightarrow{T}}_{147}\\ {\overleftrightarrow{T}}_{151}& {\overleftrightarrow{T}}_{152}& \cdots & \cdots & \cdots & {\overleftrightarrow{T}}_{157}\\ \vdots & \vdots & & & & \vdots \\ \vdots & \vdots & & & & \vdots \\ \vdots & \vdots & & & & \vdots \\ {\overleftrightarrow{T}}_{211}& {\overleftrightarrow{T}}_{212}& \cdots & \cdots & \cdots & {\overleftrightarrow{T}}_{217}\\ {\overleftrightarrow{T}}_{221}& {\overleftrightarrow{T}}_{222}& \cdots & \cdots & \cdots & {\overleftrightarrow{T}}_{227}\\ \vdots & \vdots & & & & \vdots \\ \vdots & \vdots & & & & \vdots \\ \vdots & \vdots & & & & \vdots \\ {\overleftrightarrow{T}}_{271}& {\overleftrightarrow{T}}_{272}& \cdots & \cdots & \cdots & {\overleftrightarrow{T}}_{277}\\ {\overleftrightarrow{T}}_{281}& {T}_{282}& \cdots & \cdots & \cdots & {\overleftrightarrow{T}}_{287}\end{array}\right]$$
(57)
  • Boundary conditions of the clamped at the edge x = 0:

    $$ \mathop{T}\limits^{\leftrightarrow} _{11} = \left({\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits^{\theta }} \otimes \vec{I}_{1}^{x} } \right),{ }\mathop{T}\limits^{\leftrightarrow} _{12} = \mathop{T}\limits^{\leftrightarrow} _{13} = \mathop{T}\limits^{\leftrightarrow} _{14} = \mathop{T}\limits^{\leftrightarrow} _{15} = \mathop{T}\limits^{\leftrightarrow} _{16} = \mathop{T}\limits^{\leftrightarrow} _{17} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{22} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{21} = \mathop{T}\limits^{\leftrightarrow} _{23} = \mathop{T}\limits^{\leftrightarrow} _{34} = \mathop{T}\limits^{\leftrightarrow} _{25} = \mathop{T}\limits^{\leftrightarrow} _{26} = \mathop{T}\limits^{\leftrightarrow} _{27} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{33} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right),{ }\quad \mathop{T}\limits^{\leftrightarrow} _{31} = \mathop{T}\limits^{\leftrightarrow} _{32} = \mathop{T}\limits^{\leftrightarrow} _{34} = \mathop{T}\limits^{\leftrightarrow} _{35} = \mathop{T}\limits^{\leftrightarrow} _{36} = \mathop{T}\limits^{\leftrightarrow} _{37} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{44} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right),{ }\quad \mathop{T}\limits^{\leftrightarrow} _{41} = \mathop{T}\limits^{\leftrightarrow} _{42} = \mathop{T}\limits^{\leftrightarrow} _{43} = \mathop{T}\limits^{\leftrightarrow} _{45} = \mathop{T}\limits^{\leftrightarrow} _{46} = \mathop{T}\limits^{\leftrightarrow} _{47} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{55} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right),{ }\quad \mathop{T}\limits^{\leftrightarrow} _{51} = \mathop{T}\limits^{\leftrightarrow} _{52} = \mathop{T}\limits^{\leftrightarrow} _{53} = \mathop{T}\limits^{\leftrightarrow} _{54} = \mathop{T}\limits^{\leftrightarrow} _{56} = \mathop{T}\limits^{\leftrightarrow} _{57} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{66} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right),{ }\quad \mathop{T}\limits^{\leftrightarrow} _{61} = \mathop{T}\limits^{\leftrightarrow} _{62} = \mathop{T}\limits^{\leftrightarrow} _{63} = \mathop{T}\limits^{\leftrightarrow} _{64} = \mathop{T}\limits^{\leftrightarrow} _{65} = \mathop{T}\limits^{\leftrightarrow} _{67} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{77} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits^{\theta }} \otimes \vec{I}_{1}^{x} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{71} = \mathop{T}\limits^{\leftrightarrow} _{72} = \mathop{T}\limits^{\leftrightarrow} _{73} = \mathop{T}\limits^{\leftrightarrow} _{74} = \mathop{T}\limits^{\leftrightarrow} _{75} = \mathop{T}\limits^{\leftrightarrow} _{76} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    (58)
  • Boundary conditions of the clamped at the edge θ = 0

    $$ \mathop{T}\limits^{\leftrightarrow} _{81} = \left( {\vec{I}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x} }}} \right),{ }\quad \mathop{T}\limits^{\leftrightarrow} _{82} = \mathop{T}\limits^{\leftrightarrow} _{83} = \mathop{T}\limits^{\leftrightarrow} _{84} = \mathop{T}\limits^{\leftrightarrow} _{85} = \mathop{T}\limits^{\leftrightarrow} _{86} = \mathop{T}\limits^{\leftrightarrow} _{87} = \left( {\vec{Z}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{x} }}} \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{92} = \left( {\vec{I}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits^{x}}} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{91} = \mathop{T}\limits^{\leftrightarrow} _{93} = \mathop{T}\limits^{\leftrightarrow} _{94} = \mathop{T}\limits^{\leftrightarrow} _{95} = \mathop{T}\limits^{\leftrightarrow} _{96} = \mathop{T}\limits^{\leftrightarrow} _{97} = \left( {\vec{Z}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits^{x}}} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{103} = \left( {\vec{I}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x} }}} \right),\quad { }\mathop{T}\limits^{\leftrightarrow} _{101} = \mathop{T}\limits^{\leftrightarrow} _{102} = \mathop{T}\limits^{\leftrightarrow} _{104} = \mathop{T}\limits^{\leftrightarrow} _{105} = \mathop{T}\limits^{\leftrightarrow} _{106} = \mathop{T}\limits^{\leftrightarrow} _{107} = \left( {\vec{Z}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits^{x}}} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{114} = \left( {\vec{I}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x}}} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{111} = \mathop{T}\limits^{\leftrightarrow} _{112} = \mathop{T}\limits^{\leftrightarrow} _{113} = \mathop{T}\limits^{\leftrightarrow} _{115} = \mathop{T}\limits^{\leftrightarrow} _{116} = \mathop{T}\limits^{\leftrightarrow} _{117} = \left( {\vec{Z}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits^{x}}} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{125} = \left( {\vec{I}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x}}} } \right),{ }\quad { }\mathop{T}\limits^{\leftrightarrow} _{121} = \mathop{T}\limits^{\leftrightarrow} _{122} = \mathop{T}\limits^{\leftrightarrow} _{123} = \mathop{T}\limits^{\leftrightarrow} _{124} = \mathop{T}\limits^{\leftrightarrow} _{126} = \mathop{T}\limits^{\leftrightarrow} _{127} = \left( {\vec{Z}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{x} }}} \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{136} = \left( {\vec{I}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x}}} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{131} = \mathop{T}\limits^{\leftrightarrow} _{132} = \mathop{T}\limits^{\leftrightarrow} _{133} = \mathop{T}\limits^{\leftrightarrow} _{134} = \mathop{T}\limits^{\leftrightarrow} _{135} = \mathop{T}\limits^{\leftrightarrow} _{137} = \left( {\vec{Z}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{x} }}} \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{147} = \left( {\vec{I}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x} }}} \right),{ }\quad \mathop{T}\limits^{\leftrightarrow} _{141} = \mathop{T}\limits^{\leftrightarrow} _{142} = \mathop{T}\limits^{\leftrightarrow} _{143} = \mathop{T}\limits^{\leftrightarrow} _{144} = \mathop{T}\limits^{\leftrightarrow} _{145} = \mathop{T}\limits^{\leftrightarrow} _{146} = \left( {\vec{Z}_{1}^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits^{x} }}} \right) $$
    (59)
  • Boundary conditions of the clamped at the edge x = L:

    $$ \mathop{T}\limits^{\leftrightarrow} _{151} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits^{\theta }} \otimes \vec{I}_{Nx}^{x} } \right),\quad { }\mathop{T}\limits^{\leftrightarrow} _{152} = \mathop{T}\limits^{\leftrightarrow} _{153} = \mathop{T}\limits^{\leftrightarrow} _{154} = \mathop{T}\limits^{\leftrightarrow} _{155} = \mathop{T}\limits^{\leftrightarrow} _{156} = \mathop{T}\limits^{\leftrightarrow} _{157} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits^{\theta }} \otimes \vec{Z}_{Nx}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{162} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{Nx}^{x} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{161} = \mathop{T}\limits^{\leftrightarrow} _{163} = \mathop{T}\limits^{\leftrightarrow} _{164} = \mathop{T}\limits^{\leftrightarrow} _{165} = \mathop{T}\limits^{\leftrightarrow} _{166} = \mathop{T}\limits^{\leftrightarrow} _{167} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta} } \otimes \vec{Z}_{Nx}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{173} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{Nx}^{x} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{171} = \mathop{T}\limits^{\leftrightarrow} _{172} = \mathop{T}\limits^{\leftrightarrow} _{174} = \mathop{T}\limits^{\leftrightarrow} _{175} = \mathop{T}\limits^{\leftrightarrow} _{176} = \mathop{T}\limits^{\leftrightarrow} _{177} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{Nx}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{184} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{Nx}^{x} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{181} = \mathop{T}\limits^{\leftrightarrow} _{182} = \mathop{T}\limits^{\leftrightarrow} _{183} = \mathop{T}\limits^{\leftrightarrow} _{185} = \mathop{T}\limits^{\leftrightarrow} _{186} = \mathop{T}\limits^{\leftrightarrow} _{187} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits^{\theta }} \otimes \vec{Z}_{Nx}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{195} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits^{\theta }} \otimes \vec{I}_{Nx}^{x} } \right),\quad { }\mathop{T}\limits^{\leftrightarrow} _{191} = \mathop{T}\limits^{\leftrightarrow} _{192} = \mathop{T}\limits^{\leftrightarrow} _{193} = \mathop{T}\limits^{\leftrightarrow} _{194} = \mathop{T}\limits^{\leftrightarrow} _{196} = \mathop{T}\limits^{\leftrightarrow} _{197} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{Nx}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{206} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{Nx}^{x} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{201} = \mathop{T}\limits^{\leftrightarrow} _{202} = \mathop{T}\limits^{\leftrightarrow} _{203} = \mathop{T}\limits^{\leftrightarrow} _{204} = \mathop{T}\limits^{\leftrightarrow} _{205} = \mathop{T}\limits^{\leftrightarrow} _{207} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits^{\theta }} \otimes \vec{Z}_{Nx}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{217} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{Nx}^{x} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{211} = \mathop{T}\limits^{\leftrightarrow} _{212} = \mathop{T}\limits^{\leftrightarrow} _{213} = \mathop{T}\limits^{\leftrightarrow} _{214} = \mathop{T}\limits^{\leftrightarrow} _{215} = \mathop{T}\limits^{\leftrightarrow} _{216} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{Nx}^{x} } \right) $$
    (60)
  • Boundary conditions of the clamped at the edge \(\theta \)=\({\theta }_{0}\):

    $$ \mathop{T}\limits^{\leftrightarrow} _{221} = \left( {\vec{I}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x}}} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{222} = \mathop{T}\limits^{\leftrightarrow} _{223} = \mathop{T}\limits^{\leftrightarrow} _{224} = \mathop{T}\limits^{\leftrightarrow} _{225} = \mathop{T}\limits^{\leftrightarrow} _{226} = \mathop{T}\limits^{\leftrightarrow} _{227} = \left( {\vec{Z}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{x}}} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{232} = \left( {\vec{I}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x}}} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{231} = \mathop{T}\limits^{\leftrightarrow} _{233} = \mathop{T}\limits^{\leftrightarrow} _{234} = \mathop{T}\limits^{\leftrightarrow} _{235} = \mathop{T}\limits^{\leftrightarrow} _{236} = \mathop{T}\limits^{\leftrightarrow} _{237} = \left( {\vec{Z}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{x}}} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{243} = \left( {\vec{I}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x}}} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{241} = \mathop{T}\limits^{\leftrightarrow} _{242} = \mathop{T}\limits^{\leftrightarrow} _{244} = \mathop{T}\limits^{\leftrightarrow} _{245} = \mathop{T}\limits^{\leftrightarrow} _{246} = \mathop{T}\limits^{\leftrightarrow} _{247} = \left( {\vec{Z}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{x}}} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{254} = \left( {\vec{I}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x}}} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{251} = \mathop{T}\limits^{\leftrightarrow} _{252} = \mathop{T}\limits^{\leftrightarrow} _{253} = \mathop{T}\limits^{\leftrightarrow} _{255} = \mathop{T}\limits^{\leftrightarrow} _{256} = \mathop{T}\limits^{\leftrightarrow} _{257} = \left( {\vec{Z}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{x} }}} \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{265} = \left( {\vec{I}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x}}} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{261} = \mathop{T}\limits^{\leftrightarrow} _{262} = \mathop{T}\limits^{\leftrightarrow} _{263} = \mathop{T}\limits^{\leftrightarrow} _{264} = \mathop{T}\limits^{\leftrightarrow} _{266} = \mathop{T}\limits^{\leftrightarrow} _{267} = \left( {\vec{Z}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits^{x} }}} \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{276} = \left( {\vec{I}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{x}}} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{271} = \mathop{T}\limits^{\leftrightarrow} _{272} = \mathop{T}\limits^{\leftrightarrow} _{273} = \mathop{T}\limits^{\leftrightarrow} _{274} = \mathop{T}\limits^{\leftrightarrow} _{275} = \mathop{T}\limits^{\leftrightarrow} _{277} = \left( {\vec{Z}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{x} }}} \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{287} = \left( {\vec{I}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits^{x}}} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{281} = \mathop{T}\limits^{\leftrightarrow} _{282} = \mathop{T}\limits^{\leftrightarrow} _{283} = \mathop{T}\limits^{\leftrightarrow} _{284} = \mathop{T}\limits^{\leftrightarrow} _{285} = \mathop{T}\limits^{\leftrightarrow} _{286} = \left( {\vec{Z}_{N\theta }^{\theta } \otimes {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits^{x} }}} \right) $$
    (61)
  • Simply boundary conditions at the edge x = 0:

    $$ \mathop{T}\limits^{\leftrightarrow} _{11} = A_{11} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{A}_{1}^{x} } \right) + A_{12} \frac{sin\alpha }{{a_{0} }}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right),{ }\mathop{T}\limits^{\leftrightarrow} _{12} = \mathop{T}\limits^{\leftrightarrow} _{13} = \mathop{T}\limits^{\leftrightarrow} _{15} = \mathop{T}\limits^{\leftrightarrow} _{16} = \mathop{T}\limits^{\leftrightarrow} _{17} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right),{ }\mathop{T}\limits^{\leftrightarrow} _{14} = B_{11} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{A}_{1}^{x} } \right) + B_{12} \frac{sin\alpha }{{a_{0} }}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{22} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right),{ }\mathop{T}\limits^{\leftrightarrow} _{21} = \mathop{T}\limits^{\leftrightarrow} _{23} = \mathop{T}\limits^{\leftrightarrow} _{24} = \mathop{T}\limits^{\leftrightarrow} _{25} = \mathop{T}\limits^{\leftrightarrow} _{26} = \mathop{T}\limits^{\leftrightarrow} _{27} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{33} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right),\quad { }\mathop{T}\limits^{\leftrightarrow} _{31} = \mathop{T}\limits^{\leftrightarrow} _{32} = \mathop{T}\limits^{\leftrightarrow} _{34} = \mathop{T}\limits^{\leftrightarrow} _{35} = \mathop{T}\limits^{\leftrightarrow} _{36} = \mathop{T}\limits^{\leftrightarrow} _{37} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{41} = B_{11} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{A}_{1}^{x} } \right) + B_{12} \frac{sin\alpha }{{a_{0} }}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right),{ }\quad \mathop{T}\limits^{\leftrightarrow} _{42} = \mathop{T}\limits^{\leftrightarrow} _{43} = \mathop{T}\limits^{\leftrightarrow} _{45} = \mathop{T}\limits^{\leftrightarrow} _{46} = \mathop{T}\limits^{\leftrightarrow} _{47} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{44} = D_{11} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{A}_{1}^{x} } \right) + D_{12} \frac{sin\alpha }{{a_{0} }}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{55} = \left( {I^{\theta } \otimes I_{1}^{x} } \right),\quad \mathop{T}\limits^{\leftrightarrow} _{51} = \mathop{T}\limits^{\leftrightarrow} _{52} = \mathop{T}\limits^{\leftrightarrow} _{53} = \mathop{T}\limits^{\leftrightarrow} _{54} = \mathop{T}\limits^{\leftrightarrow} _{56} = \mathop{T}\limits^{\leftrightarrow} _{57} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{66} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits^{\theta }} \otimes \vec{I}_{1}^{x} } \right),{ }\mathop{T}\limits^{\leftrightarrow} _{61} = \mathop{T}\limits^{\leftrightarrow} _{62} = \mathop{T}\limits^{\leftrightarrow} _{63} = \mathop{T}\limits^{\leftrightarrow} _{64} = \mathop{T}\limits^{\leftrightarrow} _{65} = \mathop{T}\limits^{\leftrightarrow} _{67} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    $$ \mathop{T}\limits^{\leftrightarrow} _{77} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{I}\limits ^{\theta }} \otimes \vec{I}_{1}^{x} } \right),{ }\mathop{T}\limits^{\leftrightarrow} _{71} = \mathop{T}\limits^{\leftrightarrow} _{72} = \mathop{T}\limits^{\leftrightarrow} _{73} = \mathop{T}\limits^{\leftrightarrow} _{74} = \mathop{T}\limits^{\leftrightarrow} _{75} = \mathop{T}\limits^{\leftrightarrow} _{76} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}}{\mathop{Z}\limits ^{\theta }} \otimes \vec{Z}_{1}^{x} } \right) $$
    (62)
  • Simply boundary conditions at the edge θ = 0:

    $$ \begin{aligned} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{81}} & = \left( {\vec{I}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{x} } \right),\quad \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{82}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{83}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{84}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{85}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{86}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{87}} = \left( {\vec{Z}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{92}} & = A_{{22}} \left( {\vec{A}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {a} _{1} } \right),\quad \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{91}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{93}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{94}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{96}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{97}} = \left( {\vec{Z}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right),\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{95}} = B_{{22}} \left( {\vec{A}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {a} _{1} } \right), \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{103}} & = \left( {\vec{I}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{x} } \right),\quad {\text{~}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{101}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{102}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{104}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{105}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{106}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{107}} = \left( {\vec{Z}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right), \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{114}} & = \left( {\vec{I}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{x} } \right),\quad {\text{~}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{112}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{113}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{114}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{115}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{116}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{117}} = \left( {\vec{Z}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right), \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{122}} & = B_{{22}} \left( {\vec{A}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {a} _{1} } \right),\quad \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{121}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{123}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{124}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{126}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{127}} = \left( {\vec{Z}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right),{\text{~}}\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{125}} = D_{{22}} \left( {\vec{A}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {a} _{1} } \right), \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{136}} & = \left( {\vec{I}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{x} } \right),\quad \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{131}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{132}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{133}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{134}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{135}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{137}} = \left( {\vec{Z}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right), \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{147}} & = \left( {\vec{I}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{x} } \right),\quad \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{141}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{142}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{143}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{144}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{145}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{146}} = \left( {\vec{Z}_{1}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right) \\ \end{aligned} $$
    (63)
  • Simply boundary conditions at the edge x = L:

    $$ \begin{aligned} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{151}} & = A_{{11}} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{A}_{{Nx}}^{x} } \right) + A_{{12}} \frac{{sin\alpha }}{b}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{I}_{{Nx}}^{x} } \right),~~~\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{152}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{153}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{155}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{156}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{157}} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{\theta } \otimes \vec{Z}_{{Nx}}^{x} } \right),~~~\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{154}} = B_{{11}} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{A}_{{Nx}}^{x} } \right) + B_{{12}} \frac{{sin\alpha }}{b}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{I}_{{Nx}}^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{162}} & = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{I}_{{Nx}}^{x} } \right),~~\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{161}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{163}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{164}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{165}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{166}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{167}} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{\theta } \otimes \vec{Z}_{{Nx}}^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{173}} & = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{I}_{{Nx}}^{x} } \right),~~\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{171}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{172}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{174}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{175}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{176}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{177}} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{\theta } \otimes \vec{Z}_{{Nx}}^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{181}} & = B_{{11}} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{A}_{{Nx}}^{x} } \right) + B_{{12}} \frac{{sin\alpha }}{b}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{I}_{{Nx}}^{x} } \right),~~\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{182}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{183}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{185}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{186}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{187}} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{\theta } \otimes \vec{Z}_{{Nx}}^{x} } \right),~~~\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{184}} = D_{{11}} \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{A}_{{Nx}}^{x} } \right) + D_{{12}} \frac{{sin\alpha }}{b}\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{I}_{{Nx}}^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{195}} & = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{I}_{{Nx}}^{x} } \right),~\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{191}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{192}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{193}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{194}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{196}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{197}} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{\theta } \otimes \vec{Z}_{{Nx}}^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{206}} & = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{I}_{{Nx}}^{x} } \right),~\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{201}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{202}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{203}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{204}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{205}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{207}} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{\theta } \otimes \vec{Z}_{{Nx}}^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{217}} & = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{\theta } \otimes \vec{I}_{{Nx}}^{x} } \right),~~\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{211}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{212}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{213}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{214}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{215}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{216}} = \left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{\theta } \otimes \vec{Z}_{{Nx}}^{x} } \right) \\ \end{aligned} $$
    (64)
  • Simply boundary conditions at the edge \(\theta \)=\({\theta }_{0}\):

    $$\begin{aligned} \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{221}} & = \left( {\vec{I}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{x} } \right) \\ ~\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{222}} & = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{223}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{224}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{225}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{226}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{227}} = \left( {\vec{Z}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{232}} & = A_{{22}} \left( {\vec{A}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {a} _{1} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{231}} & = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{233}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{234}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{236}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{237}} = \left( {\vec{Z}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{235}} & = B_{{22}} \left( {\vec{A}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {a} _{1} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{243}} & = \left( {\vec{I}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{241}} & = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{242}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{244}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{245}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{246}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{247}} = \left( {\vec{Z}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{254}} & = \left( {\vec{I}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{252}} & = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{253}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{254}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{255}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{256}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{257}} = \left( {\vec{Z}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{262}} & = B_{{22}} \left( {\vec{A}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {a} _{1} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{261}} & = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{263}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{264}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{266}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{267}} = \left( {\vec{Z}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{262}} & = B_{{22}} \left( {\vec{A}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {a} _{1} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{261}} & = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{263}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{264}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{266}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{267}} = \left( {\vec{Z}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{276}} & = \left( {\vec{I}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{271}} & = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{272}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{273}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{274}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{275}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{277}} = \left( {\vec{Z}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{287}} & = \left( {\vec{I}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {I} ^{x} } \right) \\ \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{281}} & = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{282}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{283}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{284}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{285}} = \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {T} _{{286}} = \left( {\vec{Z}_{{N\theta }}^{\theta } \otimes \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\leftrightarrow}$}} {Z} ^{x} } \right) \\ \end{aligned} $$
    (65)

By removing the governing equation at the boundary points, Eq. (54) can be expressed as follows:

$$ \overleftrightarrow {\overline{K}} \vec{S} = \omega^{2} \overleftrightarrow {\overline{M}} \vec{S} $$
(66)

By separating the columns corresponding to the border and middle points in Eqs. (54) and (58), these relationships can be expressed as follows:

$$ \overleftrightarrow {\overline{K}}_{b} \vec{S}_{b} + \overleftrightarrow {\overline{K}}_{d} \vec{S}_{d} = \omega^{2} \left( {\overleftrightarrow {\overline{M}}_{b} \vec{S}_{b} + \overleftrightarrow {\overline{M}}_{d} \vec{S}_{d} } \right) $$
(67a)
$$ \mathop{T}\limits^{\leftrightarrow} {}_{b} \vec{S}_{b} + \mathop{T}\limits^{\leftrightarrow} _{d} \vec{S}_{d} = \left\{ 0 \right\} $$
(67b)

Using Eq. (67b), the following relation can be expressed between the displacement at the boundary and intermediate points:

$$ \vec{S}_{b} = \mathop{P}\limits^{\leftrightarrow} \vec{S}_{d} $$
(68)

in which

$$ \mathop{P}\limits^{\leftrightarrow} = - \mathop{T}\limits^{\leftrightarrow} {}_{b}^{ - 1} T_{d} $$
(69)

By inserting Eq. (68) into Eq. (67a), the following relation can be expressed:

$$ \mathop{K}\limits^{\leftrightarrow} {}^{*} \vec{S}_{d} = \omega^{2} \mathop{M}\limits^{\leftrightarrow} {}^{*} \vec{S}_{d} $$
(70)

in which

$$ \mathop{K}\limits^{\leftrightarrow} {}^{*} = \overleftrightarrow {\overline{K}}_{d} + \overleftrightarrow {\overline{K}}_{b} \mathop{P}\limits^{\leftrightarrow} $$
(71)
$$ \mathop{M}\limits^{\leftrightarrow} {}^{*} = \overleftrightarrow {\overline{M}}_{d} + \overleftrightarrow {\overline{M}}_{b} \mathop{P}\limits^{\leftrightarrow} $$
(72)

The above equation is an eigenvalue problem and its solution process is as follows:

  • First, the nonlinear term in (71) is omitted, and as a result, the linear eigenvalue and its corresponding eigenvector are obtained.

  • Using the linear eigenvalue, the nonlinear term can be evaluated. By inserting the nonlinear expression in the eigenvalue problem, the nonlinear eigenvalue and the corresponding eigenvector will be obtained.

  • The above process continues until the eigenvalues ​​for two consecutive values satisfy the following convergence relation.

$$ \frac{{||\omega_{NL} |^{r + 1} - |\omega_{NL} |^{r} |}}{{|\omega_{NL} |^{r} }} < 0.01 $$
(73)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimi, F., Mollazeinal, A. & Ahari, M.F. Nonlinear vibration analysis of smart truncated conical porous composite shells reinforced with Terfenol-D particles. Acta Mech 235, 691–734 (2024). https://doi.org/10.1007/s00707-023-03746-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03746-5

Navigation