Skip to main content
Log in

Dynamic stability and bifurcation point analysis of FG porous core sandwich plate reinforced with graphene platelet

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, the dynamic stability and the nonlinear vibration control of a rectangular and symmetric sandwich plate made of functionally graded porous graphene platelet reinforced (FGP-GPL) as a core and two metal face layers under lateral periodic loads are investigated. The FGP-GPL sandwich plate is placed on the Winkler–Pasternak elastic foundation. Three types of distribution along the thickness of the core layer are taken into account to model the porosity of the system. The system's governing equations are derived using the first shear deformation theory (FSDT), the energy method, and Hamilton's principle. The Galerkin method is used next to convert partial differential equations (PDEs) into ordinary differential equations (ODEs). Then, using a multiple-scale method, the equation of motion can be solved. In this mathematical representation, various parameters are considered, such as porosity distribution, porosity coefficient, GPL volume fraction and shape, visco-elastic foundations, geometrical parameters, and mechanical loads, to analyze the dynamic stability and bifurcation status of the sandwich plate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Asgari, M., Rayyat Rokn-Abadi, M., Yousefi, M., Haddadpour, H.: Aeroelastic analysis of a sandwich panel with partially treated magneto-rheological fluid core. J. Intell. Mater. Syst. Struct. 30(1), 140–154 (2019)

    Google Scholar 

  2. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H., Nouri, A.: Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. Int. J. Mech. Sci. 130, 534–545 (2017)

    Google Scholar 

  3. Birman, V., Kardomateas, G.A.: Review of current trends in research and applications of sandwich structures. Compos. Part B Eng. 142, 221–240 (2018)

    Google Scholar 

  4. Arani, A.G., Jafari, G.S., Kolahchi, R.: Nonlinear vibration analysis of viscoelastic micro nano-composite sandwich plates integrated with sensor and actuator. Microsyst. Technol. 23(5), 1509–1535 (2017)

    Google Scholar 

  5. Lou, J., Ma, L., Wua, L.: Free vibration analysis of simply supported sandwich beams with lattice truss core. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 177(19), 1712–1716 (2012)

    Google Scholar 

  6. Liu, C., Zhang, Y.X., Yang, C.: Numerical modelling of mechanical behaviour of aluminium foam using a representative volume element method. Int. J. Mech. Sci. 118, 155–165 (2016)

    Google Scholar 

  7. Ashby, M., Evans, T., Fleck, N., Hutchinson, J.: Metal Foams: A Design Guide (2000)

  8. Ramamurty, U., Paul, A.: Variability in mechanical properties of a metal foam. Acta Mater. 52(4), 869–876 (2004)

    Google Scholar 

  9. Zaman, I., et al.: From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale 4(15), 4578–4586 (2012)

    Google Scholar 

  10. Mehar, K., Panda, S.K., Mahapatra, T.R.: Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure. Int. J. Mech. Sci. 133, 319–329 (2017)

    Google Scholar 

  11. Mittal, G., Dhand, V., Rhee, K.Y., Park, S.J., Lee, W.R.: A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 21, 11–25 (2015)

    Google Scholar 

  12. Saidi, A.R., Bahaadini, R., Majidi-Mozafari, K.: On vibration and stability analysis of porous plates reinforced by graphene platelets under aerodynamical loading. Compos. Part B Eng. 164, 778–799 (2019)

    Google Scholar 

  13. Ansari, R., Hassani, R., Gholami, R., Rouhi, H.: Nonlinear bending analysis of arbitrary-shaped porous nanocomposite plates using a novel numerical approach. Int. J. Non Linear. Mech. 126, 10356 (2020)

    Google Scholar 

  14. Chen, H., Ma, J., Liu, H.: Least square spectral collocation method for nonlinear heat transfer in moving porous plate with convective and radiative boundary conditions. Int. J. Therm. Sci. 132, 335–343 (2018)

    Google Scholar 

  15. Kiani, Y.: Free vibration of FG-CNT reinforced composite spherical shell panels using Gram–Schmidt shape functions. Compos. Struct. 159, 368–381 (2017)

    Google Scholar 

  16. Lei, Z.X., Zhang, L.W., Liew, K.M.: Vibration of FG-CNT reinforced composite thick quadrilateral plates resting on Pasternak foundations. Eng. Anal. Bound. Elem. 64, 1–11 (2016)

    MathSciNet  MATH  Google Scholar 

  17. Foroutan, K., Shaterzadeh, A., Ahmadi, H.: Nonlinear static and dynamic hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells. Elsevier, Amsterdam (2020)

    MATH  Google Scholar 

  18. Hajmohammad, M.H., Kolahchi, R., Zarei, M.S., Nouri, A.H.: Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory. Int. J. Mech. Sci. 153–154, 391–401 (2019)

    Google Scholar 

  19. Demirhan, P.A., Taskin, V.: Bending and free vibration analysis of Levy-type porous functionally graded plate using state space approach. Compos. Part B Eng. 160, 661–676 (2019)

    Google Scholar 

  20. Cong, P.H., Chien, T.M., Khoa, N.D., Duc, N.D.: Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT. Aerosp. Sci. Technol. 77, 419–428 (2018)

    Google Scholar 

  21. Jalaei, M.H., Civalek, O.: On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam. Int. J. Eng. Sci. 143, 14–32 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94(4), 1450–1460 (2012)

    Google Scholar 

  23. Sofiyev, A.H.: On the vibration and stability behaviors of heterogeneous-CNTRC-truncated conical shells under axial load in the context of FSDT. Thin-Walled Struct. 151, 106747 (2020)

    Google Scholar 

  24. Chen, D., Yang, J., Kitipornchai, S.: Buckling and bending analyses of a novel functionally graded porous plate using Chebyshev–Ritz method. Arch. Civ. Mech. Eng. 19(1), 157–170 (2019)

    Google Scholar 

  25. Trinh, M.C., Mukhopadhyay, T., Kim, S.E.: A semi-analytical stochastic buckling quantification of porous functionally graded plates. Aerosp. Sci. Technol. 105, 105928 (2020)

    Google Scholar 

  26. Moradi-Dastjerdi, R., Behdinan, K., Safaei, B., Qin, Z.: Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers. Eng. Struct. 222, 111141 (2020)

    Google Scholar 

  27. Sofiyev, A.H., Kuruoglu, N.: Parametric instability of shear deformable sandwich cylindrical shells containing an FGM core under static and time dependent periodic axial loads. Int. J. Mech. Sci. 101–102, 114–123 (2015)

    Google Scholar 

  28. Chen, D., Kitipornchai, S., Yang, J.: Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core. Thin-Walled Struct. 107, 39–48 (2016)

    Google Scholar 

  29. Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017)

    Google Scholar 

  30. Sahmani, S., Aghdam, M.M., Rabczuk, T.: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos. Struct. 186, 68–78 (2018)

    Google Scholar 

  31. Dong, Y.H., Li, Y.H., Chen, D., Yang, J.: Vibration characteristics of functionally graded graphene reinforced porous nanocomposite cylindrical shells with spinning motion. Compos. Part B Eng. 145, 1–13 (2018)

    Google Scholar 

  32. Yang, J., Chen, D., Kitipornchai, S.: Buckling and free vibration analyses of functionally graded graphene reinforced porous nanocomposite plates based on Chebyshev-Ritz method. Compos. Struct. 193, 281–294 (2018)

    Google Scholar 

  33. Jiao, P., Chen, Z., Li, Y., Ma, H., Wu, J.: Dynamic buckling analyses of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical shell under axial power-law time-varying displacement load. Compos. Struct. 220, 784–797 (2019)

    Google Scholar 

  34. Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S., Dastjerdi, A.A.: Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core. Steel Compos. Struct. 33(6), 891–906 (2019)

    Google Scholar 

  35. Liang, D., Wu, Q., Lu, X., Tahouneh, V.: Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers. Steel Compos. Struct. 36(1), 47–62 (2020)

    Google Scholar 

  36. Yang, Y., Chen, B., Lin, W., Li, Y., Dong, Y.: Vibration and symmetric thermal buckling of asymmetric annular sandwich plates with piezoelectric/GPLRC layers rested on foundation Aerosp. Sci. Technol. 110, 106495 (2021)

    Google Scholar 

  37. Yaghoobi, H., Taheri, F.: Analytical solution and statistical analysis of buckling capacity of sandwich plates with uniform and non-uniform porous core reinforced with graphene nanoplatelets. Compos. Struct. 252, 112700 (2020)

    Google Scholar 

  38. Bellifa, H., et al.: Influence of porosity on thermal buckling behavior of functionally graded beams. Smart Struct. Syst. 27(4), 719–728 (2021)

    Google Scholar 

  39. Bekkaye, T.H.L., et al.: Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory. Comput. Concr. An Int. J. 26(5), 439–450 (2020)

    Google Scholar 

  40. Kumar, Y., Gupta, A., Tounsi, A.: Size-dependent vibration response of porous graded nanostructure with FEM and nonlocal continuum model. Adv. Nano Res. 11(1), 1–17 (2021)

    Google Scholar 

  41. Katiyar, V., Gupta, A., Tounsi, A.: Microstructural/geometric imperfection sensitivity on the vibration response of geometrically discontinuous bi-directional functionally graded plates (2D FGPs) with partial supports by using FEM. Steel Compos. Struct. Int. J. 45(5), 621–640 (2022)

    Google Scholar 

  42. Van Vinh, P., Van Chinh, N., Tounsi, A.: Static bending and buckling analysis of bi-directional functionally graded porous plates using an improved first-order shear deformation theory and FEM. Eur. J. Mech. A Solids 96, 104743 (2022)

    MathSciNet  MATH  Google Scholar 

  43. Hadji, M., et al.: Steel and composite structures. Steel Compos. Struct. 46(1), 1 (2023)

    Google Scholar 

  44. Cuong-Le, T., Nguyen, K.D., Le-Minh, H., Phan-Vu, P., Nguyen-Trong, P., Tounsi, A.: Nonlinear bending analysis of porous sigmoid FGM nanoplate via IGA and nonlocal strain gradient theory. Adv. Nano Res. 12(5), 441–455 (2022)

    Google Scholar 

  45. Liu, G., Wu, S., Shahsavari, D., Karami, B., Tounsi, A.: Dynamics of imperfect inhomogeneous nanoplate with exponentially-varying properties resting on viscoelastic foundation. Eur. J. Mech. A Solids 95, 104649 (2022)

    MathSciNet  MATH  Google Scholar 

  46. Li, Q., et al.: Nonlinear Vibration and Dynamic Buckling Analyses of Sandwich Functionally Graded Porous Plate with Graphene Platelet Reinforcement Resting on Winkler–Pasternak, vol. 148, pp. 596–610. Elsevier, Amsterdam (2018)

    Google Scholar 

  47. Affdl, J.C.H., Kardos, J.L.: The Halpin–Tsai equations: a review. Polym. Eng. Sci. 16(5), 344–352 (1976)

    Google Scholar 

  48. Shen, H.S., Lin, F., Xiang, Y.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments. Nonlinear Dyn. 90(2), 899–914 (2017)

    Google Scholar 

  49. Hong, C.C.: Transient responses of magnetostrictive plates by using the GDQ method. Eur. J. Mech. A Solids 29(6), 1015–1021 (2010)

    MATH  Google Scholar 

  50. Hong, C.C.: Transient responses of magnetostrictive plates without shear effects. Int. J. Eng. Sci. 47(3), 355–362 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Reddy, J.N.: Energy Principles and Variational Methods in Applied Mechanics. Wiley, New York (2017)

    Google Scholar 

  52. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd Edition (2006)

  53. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells. Mech. Laminated Compos. Plates Shells (2003)

  54. Reddy, J.N.: On laminated composite plates with integrated sensors and actuators. Eng. Struct. 21(7), 568–593 (1999)

    Google Scholar 

  55. Rostami, R., Mohammadimehr, M.: Vibration control of sandwich plate–reinforced nanocomposite face sheet and porous core integrated with sensor and actuator layers using perturbation method. J. Vib. Control 27(15–16), 1736–1752 (2021)

    MathSciNet  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghadiri.

Ethics declarations

Competing interests

All authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

$$\begin{aligned} C_{11} & = - \frac{{\pi \left( {32b^{2} A_{11} - 16a^{2} A_{12} + 16a^{2} A_{66} } \right)}}{{36a^{2} b}},\quad C_{12} = - \frac{{\pi \left( {9ab^{2} \pi A_{11} + 9a^{3} \pi A_{66} } \right)}}{{36a^{2} b}}, \\ C_{13} & = - \frac{{\pi \left( {9a^{2} b\pi A_{12} + 9a^{2} b\pi A_{66} } \right)}}{{36a^{2} b}},\quad C_{14} = - \frac{{\pi \left( {9ab^{2} \pi B_{11} + 9a^{3} \pi B_{66} } \right)}}{{36a^{2} b}}, \\ C_{15} & = - \frac{{\pi \left( {9a^{2} b\pi B_{12} + 9a^{2} b\pi B_{66} } \right)}}{{36a^{2} b}}, \\ C_{21} & = - \frac{{\pi \left( { - 16b^{2} A_{12} + 32a^{2} A_{22} + 16b^{2} A_{66} } \right)}}{{36ab^{2} }},\quad C_{22} = - \frac{{\pi \left( {9ab^{2} \pi A_{12} + 9ab^{2} \pi A_{66} } \right)}}{{36ab^{2} }}, \\ C3 & = - \frac{{\pi \left( {9a^{2} b\pi A_{22} + 9b^{3} \pi A_{66} } \right)}}{{36ab^{2} }},\quad C_{24} = - \frac{{\pi \left( {9ab^{2} \pi B_{12} + 9ab^{2} \pi B_{66} } \right)}}{{36ab^{2} }}, \, \\ C_{25} & = - \frac{{\pi \left( {9a^{2} b\pi B_{22} + 9b^{3} \pi B_{66} } \right)}}{{36ab^{2} }}, \, \\ C_{31} & = \frac{{ - 2.283025571109432b^{4} A_{11} + a^{2} \left( { - 4.5660511422b^{2} A_{12} - 2.283025571132a^{2} A_{22} + 3.044034094812b^{2} A_{66} } \right)}}{{a^{3} b^{3} }} \\ C_{32} & = \frac{{5.585053606381853b^{3} A_{11} + 5.585053606381854a^{2} bA_{12} + 2.792526803190927a^{2} bA_{66} }}{{a^{2} b^{2} }} \\ C_{33} & = \frac{{5.585053606381854ab^{2} A_{12} + 5.585053606381853a^{3} A_{22} + 2.792526803190927ab^{2} A_{66} }}{{a^{2} b^{2} }} \\ C_{34} & = \frac{{5.585053606381853b^{3} B_{11} + 5.585053606381854a^{2} bB_{12} + 2.792526803190927a^{2} bB_{66} }}{{a^{2} b^{2} }} \\ C_{35} & = \frac{{5.585053606381854ab^{2} B_{12} + 5.585053606381853a^{3} B_{22} + 2.792526803190927ab^{2} B_{66} }}{{a^{2} b^{2} }} \\ C_{36} & = - 0.7853981633974483bKA_{55} \\ C_{37} & = - 0.7853981633974483aKA_{44} \\ C_{38} & = \frac{1}{{a^{2} b^{2} }}(2.46740110027ab^{3} NTx + 2.4674011002723a^{3} bNTy - 2.4674011002795a^{3} bKA_{44} \\ & \quad - 2.467401100272ab^{3} KA_{55} - 2.467401100272a^{3} bK_{p} - 2.467401100272ab^{3} K_{p} - 0.25a^{3} b^{3} K_{ww} ) \\ \end{aligned}$$
$$\begin{aligned} C_{39} & = 0.25abC_{d} \\ C_{310} & = - 0.25abI_{0} \\ C_{311} & = 2.46740110027ab^{3} N_{d} \\ C_{41} & = - \frac{{32b^{2} \pi B_{11} - 16a^{2} \pi B_{12} + 16a^{2} \pi B_{66} }}{{36a^{2} b}},\quad C_{42} = - \frac{{9ab^{2} \pi^{2} B_{11} + 9a^{3} \pi^{2} B_{66} }}{{36a^{2} b}}, \\ C_{43} & = - \frac{{9a^{2} b\pi^{2} B_{12} + 9a^{2} b\pi^{2} B_{66} }}{{36a^{2} b}} \\ C_{44} & = \frac{{9a^{3} b^{2} KA_{55} + 9ab^{2} \pi^{2} D_{11} + 9a^{3} \pi^{2} D_{66} }}{{36a^{2} b}},\quad C_{45} = - \frac{{9a^{2} b\pi^{2} D_{12} + 9a^{2} b\pi^{2} D_{66} }}{{36a^{2} b}}, \, \\ C_{46} & = - \frac{1}{4}bK\pi A_{55} \\ C_{51} & = \frac{{16b^{2} \pi B_{12} - 32a^{2} \pi B_{22} - 16b^{2} \pi B_{66} }}{{36ab^{2} }},\quad C_{52} = - \frac{{9ab^{2} \pi^{2} B_{12} + 9ab^{2} \pi^{2} B_{66} }}{{36ab^{2} }}, \, \\ C_{53} & = - \frac{{9a^{2} b\pi^{2} B_{22} + 9b^{3} \pi^{2} B_{66} }}{{36ab^{2} }} \\ C_{54} & = - \frac{{9ab^{2} \pi^{2} D_{12} + 9ab^{2} \pi^{2} D_{66} }}{{36ab^{2} }},\quad C_{55} = - \frac{{a^{2} b^{2} KA_{44} + \pi^{2} \left( {a^{2} D_{22} + b^{2} D_{66} } \right)}}{4ab}, \, \\ C_{56} & = - \frac{1}{4}aK\pi A_{44} \\ \end{aligned}$$

Appendix 2

$$\begin{aligned} S_{11} & = \left( \begin{gathered} C_{15} \left( {C_{24} \left( {C_{46} C_{53} - C_{43} C_{56} } \right) + C_{23} \left( { - C_{46} C_{54} + C_{44} C_{56} } \right)} \right) + \hfill \\ C_{14} \left( {C_{25} \left( { - C_{46} C_{53} + C_{43} C_{56} } \right) + C_{23} \left( {C_{46} C_{55} - C_{45} C_{56} } \right)} \right) + \hfill \\ C_{13} \left( {C_{25} \left( {C_{46} C_{54} - C_{44} C_{56} } \right) + C_{24} \left( { - C_{46} C_{55} + C_{45} C_{56} } \right)} \right) \hfill \\ \end{gathered} \right)/S_{1}^{*} \\ S_{12} & = ( - C_{13} C_{25} C_{44} C_{51} + C_{13} C_{24} C_{45} C_{51} + C_{11} C_{25} C_{44} C_{53} \\ & \quad - C_{11} C_{24} C_{45} C_{53} + C_{13} C_{25} C_{41} C_{54} - C_{11} C_{25} C_{43} C_{54} \\ & \quad - C_{13} C_{21} C_{45} C_{54} + C_{11} C_{23} C_{45} C_{54} - C_{13} C_{24} C_{41} C_{55} \\ & \quad + C_{11} C_{24} C_{43} C_{55} + C_{13} C_{21} C_{44} C_{55} \\ & \quad + C_{15} \left( {C_{24} \left( { - C_{43} C_{51} + C_{41} C_{53} } \right) + C_{23} \left( {C_{44} C_{51} - C_{41} C_{54} } \right)} \right. \\ & \quad \left. { + C_{21} \left( { - C_{44} C_{53} + C_{43} C_{54} } \right)} \right) - C_{11} C_{23} C_{44} C_{55} \\ & \quad + C_{14} \left( {C_{25} \left( {C_{43} C_{51} - C_{41} C_{53} } \right) + C_{23} \left( { - C_{45} C_{51} + C_{41} C_{55} } \right)} \right. \\ & \quad \left. {\left. { + C_{21} \left( {C_{45} C_{53} - C_{43} C_{55} } \right)} \right)} \right)/S_{1}^{*} \\ S_{1}^{*} & = \left( {\left( {\left( {C_{15} C_{24} - C_{14} C_{25} } \right)\left( {C_{15} C_{43} - C_{13} C_{45} } \right)} \right.} \right. \\ & \quad \left. { - \left( {C_{15} C_{23} - C_{13} C_{25} } \right)\left( {C_{15} C_{44} - C_{14} C_{45} } \right)} \right) \\ & \quad \times \left( {\left( {C_{15} C_{24} - C_{14} C_{25} } \right)\left( {C_{15} C_{52} - C_{12} C_{55} } \right)} \right. \\ & \quad \left. { - \left( {C_{15} C_{22} - C_{12} C_{25} } \right)\left( {C_{15} C_{54} - C_{14} C_{55} } \right)} \right) \\ & \quad - \left( {\left( {C_{15} C_{24} - C_{14} C_{25} } \right)\left( {C_{15} C_{42} - C_{12} C_{45} } \right)} \right. \\ & \quad \left. { - \left( {C_{15} C_{22} - C_{12} C_{25} } \right)\left( {C_{15} C_{44} - C_{14} C_{45} } \right)} \right) \\ & \quad \times \left( {\left( {C_{15} C_{24} - C_{14} C_{25} } \right)\left( {C_{15} C_{53} - C_{13} C_{55} } \right)} \right. \\ & \quad \left. {\left. { - \left( {C_{15} C_{23} - C_{13} C_{25} } \right)\left( {C_{15} C_{54} - C_{14} C_{55} } \right)} \right)} \right) \\ \end{aligned}$$
$$\begin{aligned} S_{21} & = \left( \begin{gathered} C_{15} \left( {C_{24} \left( { - C_{46} C_{52} + C_{42} C_{56} } \right) + C_{22} \left( {C_{46} C_{54} - C_{44} C_{56} } \right)} \right) \hfill \\ + C_{12} \left( {C_{25} \left( { - C_{46} C_{54} + C_{44} C_{56} } \right) + C_{24} \left( {C_{46} C_{55} - C_{45} C_{56} } \right)} \right) \hfill \\ + C_{14} \left( {C_{25} \left( {C_{46} C_{52} - C_{42} C_{56} } \right) + C_{22} \left( { - C_{46} C_{55} + C_{45} C_{56} } \right)} \right) \hfill \\ \end{gathered} \right)/S_{2}^{*} \\ S_{22} & = (C_{12} C_{25} C_{44} C_{51} - C_{12} C_{24} C_{45} C_{51} - C_{11} C_{25} C_{44} C_{52} \\ & \quad + C_{11} C_{24} C_{45} C_{52} - C_{12} C_{25} C_{41} C_{54} + C_{11} C_{25} C_{42} C_{54} \\ & \quad + C_{12} C_{21} C_{45} C_{54} + C_{15} \left( {C_{24} \left( {C_{42} C_{51} - C_{41} C_{52} } \right)} \right. \\ & \quad \left. { + C_{22} \left( { - C_{44} C_{51} + C_{41} C_{54} } \right) + C_{21} \left( {C_{44} C_{52} - C_{42} C_{54} } \right)} \right) \\ & \quad + C_{12} C_{24} C_{41} C_{55} - C_{11} C_{24} C_{42} C_{55} - C_{12} C_{21} C_{44} C_{55} \\ & \quad + C_{11} C_{22} C_{44} C_{55} - C_{11} C_{22} C_{45} C_{54} \\ & \quad + C_{14} \left( {C_{25} \left( { - C_{42} C_{51} + C_{41} C_{52} } \right) + C_{22} \left( {C_{45} C_{51} - C_{41} C_{55} } \right)} \right. \\ & \quad \left. {\left. { + C_{21} \left( { - C_{45} C_{52} + C_{42} C_{55} } \right)} \right)} \right)/S_{2}^{*} \\ S_{2}^{*} & = (C_{15} C_{24} C_{43} C_{52} - C_{14} C_{25} C_{43} C_{52} - C_{15} C_{23} C_{44} C_{52} \\ & \quad + C_{13} C_{25} C_{44} C_{52} + C_{14} C_{23} C_{45} C_{52} - C_{13} C_{24} C_{45} C_{52} \\ & \quad - C_{15} C_{24} C_{42} C_{53} + C_{14} C_{25} C_{42} C_{53} + C_{15} C_{22} C_{44} C_{53} \\ & \quad - C_{12} C_{25} C_{44} C_{53} - C_{14} C_{22} C_{45} C_{53} + C_{12} C_{24} C_{45} C_{53} \\ & \quad + C_{15} C_{23} C_{42} C_{54} - C_{13} C_{25} C_{42} C_{54} - C_{15} C_{22} C_{43} C_{54} \\ & \quad + C_{12} C_{25} C_{43} C_{54} + C_{13} C_{22} C_{45} C_{54} - C_{12} C_{23} C_{45} C_{54} \\ & \quad - C_{14} C_{23} C_{42} C_{55} + C_{13} C_{24} C_{42} C_{55} + C_{14} C_{22} C_{43} C_{55} \\ & \quad - C_{12} C_{24} C_{43} C_{55} - C_{13} C_{22} C_{44} C_{55} + C_{12} C_{23} C_{44} C_{55} )) \\ \end{aligned}$$
$$\begin{aligned} S_{31} & = \left( \begin{gathered} C_{15} \left( {C_{23} \left( {C_{46} C_{52} - C_{42} C_{56} } \right) + C_{22} \left( { - C_{46} C_{53} + C_{43} C_{56} } \right)} \right) \hfill \\ + C_{13} \left( {C_{25} \left( { - C_{46} C_{52} + C_{42} C_{56} } \right) + C_{22} \left( {C_{46} C_{55} - C_{45} C_{56} } \right)} \right) \hfill \\ + C_{12} \left( {C_{25} \left( {C_{46} C_{53} - C_{43} C_{56} } \right) + C_{23} \left( { - C_{46} C_{55} + C_{45} C_{56} } \right)} \right) \hfill \\ \end{gathered} \right)/S_{3}^{*} \\ S_{32} & = ( - C_{12} C_{25} C_{43} C_{51} + C_{12} C_{23} C_{45} C_{51} + C_{11} C_{25} C_{43} C_{52} \\ & \quad - C_{11} C_{23} C_{45} C_{52} + C_{12} C_{25} C_{41} C_{53} + C_{11} C_{22} C_{45} C_{53} \\ & \quad + C_{15} \left( {C_{23} \left( { - C_{42} C_{51} + C_{41} C_{52} } \right) + C_{22} \left( {C_{43} C_{51} - C_{41} C_{53} } \right) + C_{21} \left( { - C_{43} C_{52} + C_{42} C_{53} } \right)} \right) \\ & \quad - C_{12} C_{23} C_{41} C_{55} + C_{11} C_{23} C_{42} C_{55} + C_{12} C_{21} C_{43} C_{55} \\ & \quad - C_{11} C_{22} C_{43} C_{55} - C_{11} C_{25} C_{42} C_{53} - C_{12} C_{21} C_{45} C_{53} \\ & \quad + C_{13} \left( {C_{25} \left( {C_{42} C_{51} - C_{41} C_{52} } \right) + C_{22} \left( { - C_{45} C_{51} + C_{41} C_{55} } \right)} \right. \\ & \quad \left. {\left. { + C_{21} \left( {C_{45} C_{52} - C_{42} C_{55} } \right)} \right)} \right)/S_{3}^{*} \\ S_{3}^{*} & = (C_{15} C_{24} C_{43} C_{52} - C_{14} C_{25} C_{43} C_{52} - C_{15} C_{23} C_{44} C_{52} \\ & \quad + C_{13} C_{25} C_{44} C_{52} + C_{14} C_{23} C_{45} C_{52} - C_{13} C_{24} C_{45} C_{52} \\ & \quad - C_{15} C_{24} C_{42} C_{53} + C_{14} C_{25} C_{42} C_{53} + C_{15} C_{22} C_{44} C_{53} \\ & \quad - C_{12} C_{25} C_{44} C_{53} - C_{14} C_{22} C_{45} C_{53} + C_{12} C_{24} C_{45} C_{53} \\ & \quad { + }C_{15} C_{23} C_{42} C_{54} - C_{13} C_{25} C_{42} C_{54} - C_{15} C_{22} C_{43} C_{54} \\ & \quad + C_{12} C_{25} C_{43} C_{54} + C_{13} C_{22} C_{45} C_{54} - C_{12} C_{23} C_{45} C_{54} \\ & \quad - C_{14} C_{23} C_{42} C_{55} + C_{13} C_{24} C_{42} C_{55} + C_{14} C_{22} C_{43} C_{55} \\ & \quad - C_{12} C_{24} C_{43} C_{55} - C_{13} C_{22} C_{44} C_{55} + C_{12} C_{23} C_{44} C_{55} )))) \\ \end{aligned}$$
$$\begin{aligned} S_{41} & = \left( \begin{gathered} C_{14} \left( {C_{23} \left( { - C_{46} C_{52} + C_{42} C_{56} } \right) + C_{22} \left( {C_{46} C_{53} - C_{43} C_{56} } \right)} \right) \hfill \\ + C_{12} \left( {C_{24} \left( { - C_{46} C_{53} + C_{43} C_{56} } \right) + C_{23} \left( {C_{46} C_{54} - C_{44} C_{56} } \right)} \right) \hfill \\ + C_{13} \left( {C_{24} \left( {C_{46} C_{52} - C_{42} C_{56} } \right) + C_{22} \left( { - C_{46} C_{54} + C_{44} C_{56} } \right)} \right) \hfill \\ \end{gathered} \right)/S_{4}^{*} \\ S_{42} & = (C_{12} C_{24} C_{43} C_{51} - C_{12} C_{23} C_{44} C_{51} - C_{11} C_{24} C_{43} C_{52} \\ & \quad + C_{11} C_{23} C_{44} C_{52} - C_{12} C_{24} C_{41} C_{53} + C_{11} C_{24} C_{42} C_{53} \\ & \quad + C_{12} C_{21} C_{44} C_{53} + C_{14} \left( {C_{23} \left( {C_{42} C_{51} - C_{41} C_{52} } \right)} \right. \\ & \quad \left. { + C_{22} \left( { - C_{43} C_{51} + C_{41} C_{53} } \right) + C_{21} \left( {C_{43} C_{52} - C_{42} C_{53} } \right)} \right) \\ & \quad + C_{12} C_{23} C_{41} C_{54} - C_{11} C_{23} C_{42} C_{54} - C_{12} C_{21} C_{43} C_{54} \\ & \quad + C_{11} C_{22} C_{43} C_{54} - C_{11} C_{22} C_{44} C_{53} + C_{13} \left( {C_{24} \left( { - C_{42} C_{51} + C_{41} C_{52} } \right)} \right. \\ & \quad \left. {\left. { + C_{22} \left( {C_{44} C_{51} - C_{41} C_{54} } \right) + C_{21} \left( { - C_{44} C_{52} + C_{42} C_{54} } \right)} \right)} \right)/S_{4}^{*} \\ S_{4}^{*} & = (C_{15} C_{24} C_{43} C_{52} - C_{14} C_{25} C_{43} C_{52} - C_{15} C_{23} C_{44} C_{52} \\ & \quad + C_{13} C_{25} C_{44} C_{52} + C_{14} C_{23} C_{45} C_{52} - C_{13} C_{24} C_{45} C_{52} \\ & \quad - C_{15} C_{24} C_{42} C_{53} + C_{14} C_{25} C_{42} C_{53} + C_{15} C_{22} C_{44} C_{53} \\ & \quad - C_{12} C_{25} C_{44} C_{53} - C_{14} C_{22} C_{45} C_{53} + C_{12} C_{24} C_{45} C_{53} \\ & \quad + C_{15} C_{23} C_{42} C_{54} - C_{13} C_{25} C_{42} C_{54} - C_{15} C_{22} C_{43} C_{54} \\ & \quad + C_{12} C_{25} C_{43} C_{54} + C_{13} C_{22} C_{45} C_{54} - C_{12} C_{23} C_{45} C_{54} \\ & \quad - C_{14} C_{23} C_{42} C_{55} + C_{13} C_{24} C_{42} C_{55} + C_{14} C_{22} C_{43} C_{55} \\ & \quad - C_{12} C_{24} C_{43} C_{55} - C_{13} C_{22} C_{44} C_{55} + C_{12} C_{23} C_{44} C_{55} )) \\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zanjanchi, M., Ghadiri, M. & Sabouri-Ghomi, S. Dynamic stability and bifurcation point analysis of FG porous core sandwich plate reinforced with graphene platelet. Acta Mech 234, 5015–5037 (2023). https://doi.org/10.1007/s00707-023-03638-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03638-8

Navigation