Skip to main content
Log in

A four-variable shear and normal deformable quasi-3D beam model to analyze the free and forced vibrations of FG-GPLRC beams under moving load

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper mainly focuses on the dynamic response of composite beams reinforced with graphene platelets subjected to a moving load. The governing equations of motion of the beam are obtained by using a quasi-3D theory which takes the through-the-thickness shear strains and thickness stretching effects into account. By employing the Halpin–Tsai micro-mechanical rule, which captures the dimensions of the reinforcement, the elastic modulus of reinforced composite is evaluated. A moving load with constant magnitude and velocity, which moves on the free surface of the beam is assumed. In order to discretize the governing equations and obtain a set of ordinary time-dependent equations, the Navier solution which is proper for simply-supported boundary conditions is used. Since the governing equations are time-dependent, a Newmark algorithm is used to acquire the temporal evolution of displacements in FG-GPLRC beams. To be assured of the accuracy of results, simple cases are compared with other data in the open literature, initially. After that, novel results are presented to investigate different factors regarding natural frequencies and dynamic deflection of composite beams reinforced with graphene platelets. It is indicated that the adopted theory has sufficient accuracy to estimate the natural frequencies and dynamic response of arbitrary thick FG-GPLRC beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao, S., Zhao, Z., Yang, Z., Ke, L.L., Kitipornchai, S., Yang, J.: Functionally graded graphene reinforced composite structures: a review. Eng. Struct. 210, 110339 (2020). https://doi.org/10.1016/j.engstruct.2020.110339

    Article  Google Scholar 

  2. Wu, H., Yang, J., Kitipornchai, S.: Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment. Compos. Struct. 162, 244–254 (2017). https://doi.org/10.1016/j.compstruct.2016.12.001

    Article  Google Scholar 

  3. Kitipornchai, S., Chen, D., Yang, J.: Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets. Mater. Des. 116, 656–665 (2017). https://doi.org/10.1016/j.matdes.2016.12.061

    Article  Google Scholar 

  4. Feng, C., Kitipornchai, S., Yang, J.: Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng. Struct. 140, 110–119 (2017). https://doi.org/10.1016/j.engstruct.2017.02.052

    Article  Google Scholar 

  5. Chen, D., Yang, J., Kitipornchai, S.: Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos. Sci. Technol. 142, 235–245 (2017). https://doi.org/10.1016/j.compscitech.2017.02.008

    Article  Google Scholar 

  6. Barati, M.R., Zenkour, A.: Post-buckling analysis of refined shear deformable graphene platelet reinforced beams with porosities and geometrical imperfection. Compos. Struct. 181, 194–202 (2017). https://doi.org/10.1016/j.compstruct.2017.08.082

    Article  Google Scholar 

  7. Sahmani, S., Aghdam, M.M.: Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams. Compos. Struct. 179, 77–88 (2017). https://doi.org/10.1016/j.compstruct.2017.07.064

    Article  Google Scholar 

  8. Wang, Y., Feng, C., Santiuste, C., Zhao, Z., Yang, J.: Buckling and postbuckling of dielectric composite beam reinforced with Graphene Platelets (GPLs). Aerosp. Sci. Technol. 91, 208–218 (2019). https://doi.org/10.1016/j.ast.2019.05.008

    Article  Google Scholar 

  9. Wang, Y., Feng, C., Wang, X., Zhao, Z., Romero, S.C., Yang, J.: Nonlinear free vibration of graphene platelets (GPLs)/polymer dielectric beam. Smart Mater. Struct. 28, 055013 (2019). https://doi.org/10.1088/1361-665X/ab0b51

    Article  Google Scholar 

  10. Wang, Y., Feng, C., Wang, X., Zhao, Z., Romero, S.C., Dong, Y., Yang, J.: Nonlinear static and dynamic responses of graphene platelets reinforced composite beam with dielectric permittivity. Appl. Math. Model. 71, 298–315 (2019). https://doi.org/10.1016/j.apm.2019.02.025

    Article  MathSciNet  MATH  Google Scholar 

  11. Barati, M.R., Zenkour, A.: Analysis of postbuckling of graded porous GPL-reinforced beams with geometrical imperfection. Mech. Adv. Mater. Struct. 26, 503–511 (2019). https://doi.org/10.1080/15376494.2017.1400622

    Article  Google Scholar 

  12. Wang, Y., Xie, K., Fu, T., Shi, C.: Vibration response of a functionally graded graphene nanoplatelet reinforced composite beam under two successive moving masses. Compos. Struct. 209, 928–939 (2019). https://doi.org/10.1016/j.compstruct.2018.11.014

    Article  Google Scholar 

  13. Anirudh, B., Ganapathi, M., Anant, C., Polit, O.: A comprehensive analysis of porous graphene-reinforced curved beams byfinite element approach using higher-order structural theory: bending, vibration and buckling. Compos. Struct. 222, 110889 (2019). https://doi.org/10.1016/j.compstruct.2019.110899

    Article  Google Scholar 

  14. Wang, Y., Xie, K., Fu, T., Shi, C.: Bending and elastic vibration of a novel functionally graded polymer nanocomposite beam reinforced by graphene nanoplatelets. Nanomaterials 9, 1690 (2019). https://doi.org/10.3390/nano9121690

    Article  Google Scholar 

  15. Song, M., Chen, L., Yang, J., Zhu, W., Kitipornchai, S.: Thermal buckling and postbuckling of edge-cracked functionally graded multilayer graphene nanocomposite beams on an elastic foundation. Int. J. Mech. Sci. 161–162, 105040 (2019). https://doi.org/10.1016/j.ijmecsci.2019.105040

    Article  Google Scholar 

  16. Aditya, N.D., Ben, Z.T., Polit, O., Pradyumna, B., Ganapathi, M.: Thermal buckling and postbuckling of edge-cracked functionally graded multilayer graphene nanocomposite beams on an elastic foundation. Int. J. Nonlinear Mech. 116, 302–317 (2019). https://doi.org/10.1016/j.ijnonlinmec.2019.07.010

    Article  Google Scholar 

  17. Gao, K., Do, D.M., Li, R., Kitipornchai, S., Yang, J.: Probabilistic stability analysis of functionally graded graphene reinforced porous beams. Aerosp. Sci. Technol. 98, 105738 (2020). https://doi.org/10.1016/j.ast.2020.105738

    Article  Google Scholar 

  18. Mohammadimehr, M., Firouzeh, S., Pahlavanzadeh, S., Heidari, Y., Irani-Rahaghi, M.: Free vibration of sandwich micro-beam with porous foam core, GPL layers and piezo-magneto-electric facesheets via NSGT. Comput. Concr. 26, 75–94 (2020). https://doi.org/10.12989/cac.2020.26.1.075

    Article  Google Scholar 

  19. Yang, Z., Tam, M., Zhang, Y., Kitipornchai, S., Lv, J., Yang, J.: Nonlinear dynamic response of FG graphene platelets reinforced composite beam with edge cracks in thermal environment. Int. J. Struct. Stab. Dyn. 20, 2043005 (2020). https://doi.org/10.1142/S0219455420430051

    Article  MathSciNet  Google Scholar 

  20. Barati, M.R., Shahverdi, H.: Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams. J. Braz. Soc. Mech. Sci. Eng. 42, 33 (2020). https://doi.org/10.1007/s40430-019-2118-8

    Article  Google Scholar 

  21. Song, M., Gong, Y., Yang, J., Zhu, W., Kitipornchai, S.: Nonlinear free vibration of cracked functionally graded graphene platelet-reinforced nanocomposite beams in thermal environments. J. Sound Vib. 468, 115115 (2020). https://doi.org/10.1016/j.jsv.2019.115115

    Article  Google Scholar 

  22. Nematollahi, M.S., Mohammadi, H., Dimitri, R., Tornabene, F.: Nonlinear vibration of functionally graded graphene nanoplatelets polymer nanocomposite sandwich beams. Appl. Sci. 10, 5669 (2020). https://doi.org/10.3390/app10165669

    Article  Google Scholar 

  23. Salami, S.J.: Large deflection geometrically nonlinear bending of sandwich beams with flexible core and nanocomposite face sheets reinforced by nonuniformly distributed graphene platelets. J. Sandw. Struct. Mater. 22, 866–895 (2020). https://doi.org/10.1177/1099636219896070

    Article  Google Scholar 

  24. Tam, M., Yang, Z., Zhao, S., Zhang, H., Zhang, Y., Yang, J.: Nonlinear bending of elastically restrained functionally graded graphene nanoplatelet reinforced beams with an open edge crack. J. Sandw. Struct. Mater. 156, 106972 (2020). https://doi.org/10.1016/j.tws.2020.106972

    Article  Google Scholar 

  25. Bahranifard, F., Golbahar Haghighi, M.R., Malekzadeh, P.: In-plane responses of multilayer FG-GPLRC curved beams in thermal environment under moving load. Acta Mech. 231, 2679–2696 (2020). https://doi.org/10.1007/s00707-020-02654-2

    Article  MathSciNet  Google Scholar 

  26. Xu, H., Wang, Y.Q., Zhang, Y.: Free vibration of functionally graded graphene platelet-reinforced porous beams with spinning movement via differential transformation method. Arch. Appl. Mech. 91, 4817–4834 (2021). https://doi.org/10.1007/s00419-021-02036-7

    Article  Google Scholar 

  27. Liu, D., Chen, D., Yang, J., Kitipornchai, S.: Buckling and free vibration of axially functionally graded graphene reinforced nanocomposite beams. Eng. Struct. 249, 113327 (2021). https://doi.org/10.1016/j.engstruct.2021.113327

    Article  Google Scholar 

  28. Qian, Q., Wang, Y., Zhu, F., Feng, C., Yang, J., Wang, S.: Primary nonlinear damped natural frequency of dielectric composite beam reinforced with graphene platelets (GPLs). Arch. Civ. Mech. Eng. 22, 53 (2022). https://doi.org/10.1007/s43452-021-00369-2

    Article  Google Scholar 

  29. Moghaddasi, M., Kiani, Y.: Free and forced vibrations of graphene platelets reinforced composite laminated arches subjected to moving load. Meccanica 57(5), 1105–1124 (2022). https://doi.org/10.1007/s11012-022-01476-x

    Article  MathSciNet  Google Scholar 

  30. Yang, N., Moradi, Z., Khadimallah, M.A., Arvin, H.: Application of the Chebyshev-Ritz route in determination of the dynamic instability region boundary for rotating nanocomposite beams reinforced with graphene platelet subjected to a temperature increment. Eng. Anal. Bound. Elem. 139, 169–179 (2022). https://doi.org/10.1016/j.enganabound.2022.03.013

    Article  MathSciNet  MATH  Google Scholar 

  31. Mojiri, H.R., Jedari Salami, S.: Free vibration and dynamic transient response of functionally graded composite beams reinforced with graphene nanoplatelets (GPLs) resting on elastic foundation in thermal environment. Mech. Based Des. Struct. Mach. 50, 1872–1892 (2020). https://doi.org/10.1080/15397734.2020.1766492

    Article  Google Scholar 

  32. Eftekhari, S.A.: Differential quadrature procedure with regularization of the dirac-delta function for numerical solution of moving load problem. Latin Am. J. Solids Struct. 12(7), 1241–1265 (2015). https://doi.org/10.1590/1679-78251417

    Article  Google Scholar 

  33. Matsunaga, H.: Vibration and buckling of deep beam-column on two-paraemter elastic foundation. J. Sound. Vib. 228(2), 359–376 (1999). https://doi.org/10.1006/jsvi.1999.2415

    Article  Google Scholar 

  34. Kiani, Y.: Influence of graphene platelets on the response of composite plates subjected to a moving load. Mech. Based Des. Struct. Mach. 50(4), 1123–1136 (2022). https://doi.org/10.1080/15397734.2020.1744006

    Article  Google Scholar 

  35. Kiani, Y., Eslami, M.R.: Isogeometric thermal postbuckling of FG-GPLRC laminated plates. Steel Compos. Struct. 32(6), 821–832 (2019). https://doi.org/10.12989/scs.2019.32.6.821

    Article  Google Scholar 

  36. Kiani, Y.: NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates. J. Therm. Stresses 43(1), 90–108 (2020). https://doi.org/10.1080/01495739.2019.1673687

    Article  Google Scholar 

  37. Javani, M., Kiani, Y., Eslami, M.R.: Thermal buckling of FG graphene platelet reinforced composite annular sector plates. Thin-walled Struct. 148, 106589 (2020). https://doi.org/10.1016/j.tws.2019.106589

    Article  Google Scholar 

  38. Javani, M., Kiani, Y., Eslami, M.R.: Application of generalized differential quadrature element method to free vibration of FG-GPLRC T-shaped plates. Eng. Struct. 242, 112510 (2021). https://doi.org/10.1016/j.engstruct.2021.112510

    Article  Google Scholar 

  39. Javani, M., Kiani, Y., Eslami, M.R.: Free vibration analysis of FG-GPLRC L-shaped plates implementing GDQE approach. Thin-walled Struct. 162, 107600 (2021). https://doi.org/10.1016/j.tws.2021.107600

    Article  Google Scholar 

  40. Baghbadorani, A.A., Kiani, Y.: Free vibration analysis of functionally graded cylindrical shells reinforced with graphene platelets. Compos. Struct. 276, 114546 (2021). https://doi.org/10.1016/j.compstruct.2021.114546

    Article  Google Scholar 

  41. Jafari, P., Kiani, Y.: Free vibration of functionally graded graphene platelet reinforced plates: a quasi 3D shear and normal deformable plate model. Compos. Struct. 275, 114409 (2021). https://doi.org/10.1016/j.compstruct.2021.114409

    Article  Google Scholar 

  42. Song, M., Kitipornchai, S., Yang, J.: Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos. Struct. 159, 579–588 (2017). https://doi.org/10.1016/j.compstruct.2016.09.070

    Article  Google Scholar 

  43. Javani, M., Kiani, Y., Eslami, M.R.: On the free vibrations of FG-GPLRC folded plates using GDQE procedure. Compos. Struct. 286, 115273 (2022). https://doi.org/10.1016/j.compstruct.2022.115273

    Article  Google Scholar 

  44. Esmaeili, H.R., Kiani, Y., Tadi, B.Y.: Vibration characteristics of composite doubly curved shells reinforced with graphene platelets with arbitrary edge supports. Acta Mech. 233(2), 665–683 (2022). https://doi.org/10.1007/s00707-021-03140-z

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Kiani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The elements of mass and stiffness matrices associated to Eq. (29) are

$$M_{11} = I_{1}$$
$$M_{12} = - \alpha_{m} I_{2}$$
$$M_{13} = I_{4}$$
$$M_{14} = 0$$
$$M_{22} = I_{1} + I_{3} \alpha_{m}^{2}$$
$$M_{23} = - \alpha_{m} I_{5}$$
$$M_{24} = I_{7}$$
$$M_{33} = I_{6}$$
$$M_{34} = 0$$
$$M_{44} = I_{8}$$
$$K_{11} = A_{11} \alpha_{m}^{2}$$
$$K_{12} = - B_{11} \alpha_{m}^{3}$$
$$K_{13} = C_{11} \alpha_{m}^{2}$$
$$K_{14} = - D_{13} \alpha_{m}$$
$$K_{22} = E_{11} \alpha_{m}^{4}$$
$$K_{23} = - F_{11} \alpha_{m}^{3}$$
$$K_{24} = G_{13} \alpha_{m}^{2}$$
$$K_{33} = H_{11} \alpha_{m}^{2} + L_{55}$$
$$K_{34} = \left( {L_{55} - J_{13} } \right)\alpha_{m}$$
$$K_{44} = L_{55} \alpha_{m}^{2} + P_{33}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, P., Kiani, Y. A four-variable shear and normal deformable quasi-3D beam model to analyze the free and forced vibrations of FG-GPLRC beams under moving load. Acta Mech 233, 2797–2814 (2022). https://doi.org/10.1007/s00707-022-03256-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03256-w

Navigation