Skip to main content
Log in

Weak form quadrature elements based on absolute nodal coordinate formulation for planar beamlike structures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Geometrically nonlinear analysis of planar beamlike structures is conducted using weak form quadrature elements that are established on the basis of the absolute nodal coordinate formulation (ANCF). Both the number of nodes along the beam axis and the order of expansion over the beam cross section can be chosen arbitrarily, enabling the element to cope with beams with continuously varying cross section and high-order transverse shear deformation. Four typical examples are given to verify the effectiveness of the formulation. Results demonstrate that satisfactorily accurate solutions of elastic planar beamlike structures with strong geometrical nonlinearity can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Reissner, E.: On one-dimensional finite-strain beam theory: The plane problem. Zeitschrift für angewandte Mathematik und Physik (ZAMP) 23(5), 795–804 (1972)

    Article  Google Scholar 

  2. Simo, J.C.: A finite strain beam formulation the three-dimensional dynamic problem. Part I. Comp. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    Article  Google Scholar 

  3. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: Computational aspects. Comp. Methods Appl. Mech. Eng. 58 (1), 79–116 (1986)

    Article  Google Scholar 

  4. Jelenić, G., Crisfield, M.A.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171(1–2), 141–171 (1999)

    Article  MathSciNet  Google Scholar 

  5. Betsch, P., Steinmann, P.: Frame-indifferent beam finite elements based upon the geometrically exact beam theory. Int. J. Numer. Meth. Eng. 54(12), 1775–1788 (2002)

    Article  MathSciNet  Google Scholar 

  6. Auricchio, F., Carotenuto, P., Reali, A.: On the geometrically exact beam model: A consistent, effective and simple derivation from three-dimensional finite-elasticity. Int. J. Solids Struct. 45(17), 4766–4781 (2008)

    Article  Google Scholar 

  7. Zupan, E., Saje, M., Zupan, D.: On a virtual work consistent three-dimensional Reissner-Simo beam formulation using the quaternion algebra. Acta Mech. 224(8), 1709–1729 (2013)

    Article  MathSciNet  Google Scholar 

  8. Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory versus Simo-Reissner theory. Arch. Comput. Methods Eng. 26(1), 163–243 (2019)

    Article  MathSciNet  Google Scholar 

  9. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Sys. Dyn. 1(3), 339–348 (1997)

    Article  MathSciNet  Google Scholar 

  10. Tsai, H.C., Kelly, J.M.: Buckling of short beams with warping effect included. Int. J. Solids Struct. 42(1), 239–253 (2005)

    Article  Google Scholar 

  11. Heyliger, P.R., Reddy, J.N.: A higher order beam finite element for bending and vibration problems. J. Sound Vib. 126(2), 309–326 (1988)

    Article  Google Scholar 

  12. Shabana, A.A., Hussien, H.A., Escalona, J.L.: Application of the absolute nodal coordinate formulation to large rotation and large deformation problems. J. Mech. Des. 120(2), 188–195 (1998)

    Article  Google Scholar 

  13. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  14. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2001)

    Article  Google Scholar 

  15. Li, P., Gantoi, F.M., Shabana, A.A.: Higher order representation of the beam cross section deformation in large displacement finite element analysis. J. Sound Vib. 330(26), 6495–6508 (2011)

    Article  Google Scholar 

  16. Matikainen, M.K., Dmitrochenko, O., Mikkola, A.: Beam elements with trapezoidal cross section deformation modes based on the absolute nodal coordinate formulation. In: International Conference of Numerical Analysis and Applied Mathematics 2010, Rhodes, Greece (2010)

  17. Shen, Z., Li, P., Liu, C., Hu, G.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77(3), 1019–1033 (2014)

    Article  Google Scholar 

  18. Ebel, H., Matikainen, M.K., Hurskainen, V.-V., Mikkola, A.: Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Nonlinear Dyn. 88(2), 1075–1091 (2017)

    Article  Google Scholar 

  19. Matikainen, M.K., Valkeapää, A.I., Mikkola, A.M., Schwab, A.L.: A study of moderately thick quadrilateral plate elements based on the absolute nodal coordinate formulation. Multibody Syst Dyn. 31(3), 309–338 (2014)

    Article  MathSciNet  Google Scholar 

  20. Ebel, H., Matikainen, M.K., Hurskainen, V.-V., Mikkola, A.: Analysis of high-order quadrilateral plate elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Adv. Mech. Eng. 9(6), 1–12 (2017)

    Article  Google Scholar 

  21. Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: Application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8 (2), 021004 (2013)

  22. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318(3), 461–487 (2008)

    Article  Google Scholar 

  23. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34(1), 53–74 (2003)

    Article  Google Scholar 

  24. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Sys.Dyn. 20(4), 359–384 (2008)

    Article  MathSciNet  Google Scholar 

  25. Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Sys.Dyn. 26(3), 245–263 (2011)

    Article  Google Scholar 

  26. Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mech. 229(7), 2923–2946 (2018)

    Article  MathSciNet  Google Scholar 

  27. Zhong, H., Yu, T.: Flexural vibration analysis of an eccentric annular Mindlin plate. Arch. Appl. Mech. 77(4), 185–195 (2007)

    Article  Google Scholar 

  28. Zhong, H., Yu, T.: A weak form quadrature element method for plane elasticity problems. Appl. Math. Model. 33(10), 3801–3814 (2009)

    Article  MathSciNet  Google Scholar 

  29. Xiao, N., Zhong, H.: Non-linear quadrature element analysis of planar frames based on geometrically exact beam theory. Int. J. Non-Linear Mech. 47(5), 481–488 (2012)

    Article  MathSciNet  Google Scholar 

  30. Zhang, R., Zhong, H.: Weak form quadrature element analysis of spatial geometrically exact shear-rigid beams. Finite Elem. Anal. Des. 87, 22–31 (2014)

    Article  MathSciNet  Google Scholar 

  31. Zhang, R., Zhong, H.: A weak form quadrature element formulation for geometrically exact thin shell analysis. Comput. Struct. 202, 44–59 (2018)

    Article  Google Scholar 

  32. Zhang, R., Zhong, H., Yao, X.: A weak form quadrature element formulation of geometrically exact shells incorporating drilling degrees of freedom. Comput. Mech. 63(4), 663–679 (2019)

    Article  MathSciNet  Google Scholar 

  33. Bellman, R., Casti, J.: Differential quadrature and long-term integration. J. Math. Anal. Appl. 34(2), 235–238 (1971)

    Article  MathSciNet  Google Scholar 

  34. Quan, J.R., Chang, C.T.: New insights in solving distributed system equations by the quadrature method—I. Anal. Comp. Chem. Eng. 13(7), 779–788 (1989)

    Article  Google Scholar 

  35. Shabana, A.A., Maqueda, L.G.: Slope discontinuities in the finite element absolute nodal coordinate formulation: gradient deficient elements. Multibody Sys.Dyn. 20(3), 239–249 (2008)

    Article  MathSciNet  Google Scholar 

  36. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (1944)

    MATH  Google Scholar 

  37. Hodges, D., Rajagopal, A., Ho, J., Yu, W.: Stress and strain recovery for the in-plane deformation of an isotropic tapered strip-beam. J. Mech. Mater. Struct. 5(6), 963–975 (2011)

    Article  Google Scholar 

  38. DaDeppo, D.A., Schmidt, R.: Instability of clamped-hinged circular arches subjected to a point load. J. Appl. Mech. 42(4), 894–896 (1975)

    Article  Google Scholar 

  39. Saje, M., Turk, G., Kalagasidu, A., Vratanar, B.: A kinematically exact finite element formulation of elastic–plastic curved beams. Comput. Struct. 67(4), 197–214 (1998)

    Article  Google Scholar 

  40. Zupan, D., Saje, M.: Finite-element formulation of geometrically exact three-dimensional beam theories based on interpolation of strain measures. Comput. Methods Appl. Mech. Eng. 192(49), 5209–5248 (2003)

    Article  MathSciNet  Google Scholar 

  41. Argyris, J.H., Symeonidis, S.: A sequel to: Nonlinear finite element analysis of elastic systems under nonconservative loading—Natural formulation. Part I. Quasistatic problems. Comp. Methods Appl. Mech. Eng. 26 (3), 377–383 (1981)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhi Zhong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhong, H. Weak form quadrature elements based on absolute nodal coordinate formulation for planar beamlike structures. Acta Mech 232, 4289–4307 (2021). https://doi.org/10.1007/s00707-021-03052-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03052-y

Navigation