Skip to main content
Log in

Nonlinear analysis of laminated FG-GPLRC beams resting on an elastic foundation based on the two-phase stress-driven nonlocal model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, a nonlinear formulation for beam-type structures is presented within the framework of two-phase stress-driven (SD) nonlocal theory. Various boundary conditions are considered for the beams, and it is assumed that they are on the Winkler- and Pasternak-type elastic foundations. It is considered that the beams are made of laminated functionally graded-graphene platelet-reinforced composite (FG-GPLRC) whose properties are estimated by means of the Halpin–Tsai model. The Euler–Bernoulli beam theory is also used for the modeling. The governing equations are derived based on the integral form of SD nonlocal theory using a variational approach considering geometrical nonlinearity. The equations of the SD model in differential form in conjunction with associated constitutive boundary conditions are also obtained. Moreover, a numerical approach based upon the generalized differential quadrature (GDQ) method is developed for the solution of the nonlinear bending problem. The influences of volume fraction/distribution pattern of GPLs, nonlocality, elastic foundation, and geometrical parameters on the bending response of beams under different end conditions are investigated. Furthermore, comparisons are given between the linear and nonlinear results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yeung, K.W., Ong, C.W.: Micro-pressure sensors made of indium tin oxide thin films. Sens. Actuat. A: Phys. 137, 1–5 (2007)

    Google Scholar 

  2. Filippini, D., Andersson, T.P.M., Svensson, S.P.S., Lundstrom, I.: Microplate based biosensing with a computer screen aided technique. Biosens. Bioelectron. 19, 35–41 (2003)

    Google Scholar 

  3. Mannsfeld, S.C.B., Tee, B.C.-K., Stoltenberg, R.M., Chen, C.V.H.-H., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C., Bao, Z.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9, 859–864 (2010)

    Google Scholar 

  4. Ayela, F., Fournier, T.: An experimental study of anharmonic micromachined silicon resonators. Meas. Sci. Technol. 9, 1821–1830 (1998)

    Google Scholar 

  5. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Google Scholar 

  6. McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060–1067 (2005)

    Google Scholar 

  7. Zhu, H.T., Zbib, H.M., Aifantis, E.C.: Strain gradients and continuum modeling of size effect in metal matrix composites. Acta Mech. 121, 165–176 (1995)

    MATH  Google Scholar 

  8. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16, 51–78 (1964)

    MathSciNet  MATH  Google Scholar 

  9. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Google Scholar 

  10. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    MATH  Google Scholar 

  11. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    MathSciNet  MATH  Google Scholar 

  12. Koiter, W.T. (1964) Couple stresses in the theory of elasticity. In: Abstracts of the Koninklijke Nederlandse Akademie van Wetenschappen (B), 67. pp 17–44

  13. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    MATH  Google Scholar 

  14. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Rat. Mech. Anal. 57, 291–323 (1975)

    MathSciNet  MATH  Google Scholar 

  15. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14, 431–440 (1978)

    MATH  Google Scholar 

  16. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    MathSciNet  MATH  Google Scholar 

  17. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Google Scholar 

  18. Peddieson, J., Buchanan, G.R., McNitt, R.P.: Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 41, 305–312 (2003)

    Google Scholar 

  19. Arash, B., Wang, Q.: A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes. Comput. Mater. Sci. 51, 303–313 (2012)

    Google Scholar 

  20. Wang, K.F., Wang, B.L., Kitamura, T.: A review on the application of modified continuum models in modeling and simulation of nanostructures. Acta Mech. Sin. 32, 83–100 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Ansari, R., Rouhi, H., Sahmani, S.: Calibration of the analytical nonlocal shell model for vibrations of double-walled carbon nanotubes with arbitrary boundary conditions using molecular dynamics. Int. J. Mech. Sci. 53, 786–792 (2011)

    Google Scholar 

  22. Wang, Q., Liew, K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236–242 (2007)

    Google Scholar 

  23. Challamel, N., Wang, C.: The small length scale effect for a non-local cantilever beam: a paradox solved. Nanotechnology 19, 345703 (2008)

    Google Scholar 

  24. Fernández-Sáez, J., Zaera, R., Loya, J.A., Reddy, J.N.: Bending of Euler-Bernoulli beams using Eringen’s integral formulation: a paradox resolved. Int. J. Eng. Sci. 99, 107–116 (2016)

    MathSciNet  MATH  Google Scholar 

  25. Norouzzadeh, A., Ansari, R.: Finite element analysis of nano-scale Timoshenko beams using the integral model of nonlocal elasticity. Physica E 88, 194–200 (2017)

    Google Scholar 

  26. Khodabakhshi, P., Reddy, J.N.: A unified integro-differential nonlocal model. Int. J. Eng. Sci. 95, 60–75 (2015)

    MathSciNet  MATH  Google Scholar 

  27. Norouzzadeh, A., Ansari, R., Rouhi, H.: Pre-buckling responses of Timoshenko nanobeams based on the integral and differential models of nonlocal elasticity: an isogeometric approach. Appl. Phys. A 123, 330 (2017)

    Google Scholar 

  28. Koutsoumaris, C.C., Eptaimeros, K.G., Tsamasphyros, G.J.: A different approach to Eringen’s nonlocal integral stress model with applications for beams. Int. J. Solids Struct. 112, 222–238 (2017)

    Google Scholar 

  29. Zhu, X., Li, L.: Twisting statics of functionally graded nanotubes using Eringen’s nonlocal integral model. Compos. Struct. 78, 87–96 (2017)

    Google Scholar 

  30. Romano, G., Barretta, R.: Nonlocal elasticity in nanobeams: the stress-driven integral model. Int. J. Eng. Sci. 115, 14–27 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Romano, G., Barretta, R., Diaco, M., Marotti de Sciarra, F.: Constitutive boundary conditions and paradoxes in nonlocal elastic nano-beams. Int. J. Mech. Sci. 121, 151–156 (2017)

    Google Scholar 

  32. Abazari, A.M., Safavi, S.M., Rezazadeh, G., Villanueva, L.G.: Modelling the size effects on the mechanical properties of micro/nano structures. Sensors 15, 28543–28562 (2015)

    Google Scholar 

  33. Apuzzo, A., Barretta, R., Luciano, R., Marotti de Sciarra, F., Penna, R.: Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model. Compos. Part B: Eng. 123, 105–111 (2017)

    Google Scholar 

  34. Barretta, R., Feo, L., Luciano, R., Marotti de Sciarra, F., Penna, R.: Nano-beams under torsion: a stress-driven nonlocal approach, PSU Res. Rev. 1, 164–169 (2017)

    Google Scholar 

  35. Faraji Oskouie, M., Ansari, R., Rouhi, H.: Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach. Acta Mech Sin. 34, 871–882 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Faraji Oskouie, M., Ansari, R., Rouhi, H.: A numerical study on the buckling and vibration of nanobeams based on the strain and stress-driven nonlocal integral models. Int. J. Comput. Mater. Sci. Eng. 7, 1850016 (2018)

    MATH  Google Scholar 

  37. Faraji Oskouie, M., Ansari, R., Rouhi, H.: Stress-driven nonlocal and strain gradient formulations of Timoshenko nanobeams. Eur. Phys. J. Plus 133, 336 (2018)

    MATH  Google Scholar 

  38. Barretta, R., Canađija, M., Luciano, R., Marotti de Sciarra, F.: Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. Int. J. Eng. Sci. 126, 53–67 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Barretta, R., Faghidian, S.A., Marotti de Sciarra, F.: Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. Int. J. Eng. Sci. 136, 38–52 (2019)

    MathSciNet  MATH  Google Scholar 

  40. Malikan, M., Eremeyev, V.A.: Free vibration of flexomagnetic nanostructured tubes based on SD nonlocal elasticity. In: Altenbach, H., Chinchaladze, N., Kienzler, R., Müller, W. (eds.) Analysis of shells, plates and beams. Advanced structured materials, vol. 134. Springer, Cham (2020)

    Google Scholar 

  41. Roghani, M., Rouhi, H.: Nonlinear stress-driven nonlocal formulation of Timoshenko beams made of FGMs. Thermodyn, Continuum Mech (2020). https://doi.org/10.1007/s00161-020-00906-z

    Book  Google Scholar 

  42. Yang, J., Wu, H., Kitipornchai, S.: Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos. Struct. 161, 111–118 (2017)

    Google Scholar 

  43. Halpin Affdl, J.C., Kardos, J.L.: The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16, 344–352 (1976)

    Google Scholar 

  44. Hejazi, S.M., Abtahi, S.M., Safaie, F.: Investigation of thermal stress distribution in fiber-reinforced roller compacted concrete pavements. J. Ind. Text 45, 896–914 (2016)

    Google Scholar 

  45. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M., Mansour, A.: Vibration of nonlinear graduation of nano-Timoshenko beam considering the neutral axis position. Appl. Math. Comput. 235, 512–529 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Romano, G., Barretta, R., Diaco, M.: On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 131–132, 490–499 (2017)

    Google Scholar 

  47. Reddy, J.N.: An Introduction to nonlinear finite element analysis: with applications to heat transfer, fluid mechanics, and solid mechanics. OUP, Oxford (2014)

    MATH  Google Scholar 

  48. Sahmani, S., Aghdam, M.M.: Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams. Compos. Struct. 179, 77–88 (2017)

    Google Scholar 

  49. Barretta, R., Fabbrocino, F., Luciano, R., Marotti de Sciarra, F.: Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams. Physica E. 97, 13–30 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ansari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, R., Faraji Oskouie, M., Roghani, M. et al. Nonlinear analysis of laminated FG-GPLRC beams resting on an elastic foundation based on the two-phase stress-driven nonlocal model. Acta Mech 232, 2183–2199 (2021). https://doi.org/10.1007/s00707-021-02935-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02935-4

Navigation