Skip to main content
Log in

Three-dimensional analytical model for vibrations from a tunnel embedded in an unsaturated half-space

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An analytical model for predicting the vibrations from an underground railway tunnel embedded in an unsaturated half-space is proposed. The tunnel lining is modeled as an infinite Flügge cylindrical shell, and the unsaturated soil is modeled as a three-phase medium comprising solid grains and pores containing water and air. By using the transformation properties between the plane wave functions and the cylindrical wave functions, the model is coupled based on the boundary conditions. The developed model is validated by comparison with existing tunnel models, and the effect of saturation on the dynamic response of the tunnel–soil system is demonstrated through a case study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Forrest, J.A., Hunt, H.E.M.: A three-dimensional model for calculation of train-induced ground vibration. J. Sound Vib. 294(4/5), 678–705 (2006)

    Article  Google Scholar 

  2. Lai, C.G., Callerio, A., Faccioli, E., et al.: Prediction of railway-induced ground vibrations in tunnels. J. Vib. Acoust. 127(5), 503–514 (2005)

    Article  Google Scholar 

  3. Balendra, T., Chua, K.H., Lo, K.W., et al.: Steady-state vibration of subway-soil building system. J. Eng. Mech. 115, 145–162 (1989)

    Article  Google Scholar 

  4. Chua, K.H., Balendera, T., Lo, K.W.: Ground-borne vibrations due to trains in tunnels. Earthq. Eng. Struct. Dyn. 21, 445–460 (1992)

    Article  Google Scholar 

  5. Real, T., Zamorano, C., Ribes, F., et al.: Train-induced vibration prediction in tunnels using 2D and 3D FEM models in time domain. Tunn. Undergr. Space Technol. 49, 376–383 (2015)

    Article  Google Scholar 

  6. Bian, X.C., Jin, W.F., Jiang, H.G.: Ground-borne vibrations due to dynamic loadings from moving trains in subway tunnels. J. Zhejiang Univ. Sci. A Appl. Phys. Eng. 13(11), 870–876 (2012)

    Article  Google Scholar 

  7. Gao, G.Y., Chen, Q.S., He, J.F., et al.: Investigation of ground vibration due to trains moving on saturated multi-layered ground by 2.5D finite element method. Soil Dyn. Earthq. Eng. 40, 87–98 (2012)

    Article  Google Scholar 

  8. Degrande, G., Clouteau, D., Othman, R., et al.: A numerical model for ground-borne vibrations from underground railway traffic based on a periodic finite element-boundary element formulation. J. Sound Vib. 293(3–5), 645–666 (2006)

    Article  Google Scholar 

  9. Sheng, X., Jones, C.J.C., Thompson, D.J.: Modelling ground vibration from railways using wavenumber finite and boundary-element methods. Math. Phys. Eng. Sci. 461, 2043–2070 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Hung, H.H., Yang, Y.B.: Analysis of ground vibrations due to underground trains by 2.5D finite infinite element approach. Earthq. Eng. Eng. Vib. 9(3), 327–335 (2010)

    Article  Google Scholar 

  11. Nejati, H.R., Ahmadi, M., Hashemolhosseini, H.: Numerical analysis of ground surface vibration induced by underground train movement. Tunn. Undergr. Space Technol. 29, 1–9 (2012)

    Article  Google Scholar 

  12. Zhou, S.H., Zhang, X.H., Di, H.G., et al.: Metro train-track-tunnel-soil vertical dynamic interactions–Semi-analytical approach. Veh. Syst. Dyn. 56(12), 1945–1968 (2018)

    Article  Google Scholar 

  13. Metrikine, A.V., Vrouwenvelder, A.C.W.M.: Surface ground vibration due to a moving train in a tunnel: two-dimensional model. J. Sound Vib. 234(1), 43–66 (2000)

    Article  Google Scholar 

  14. Forrest, J.A., Hunt, H.E.M.: Ground vibration generated by trains in underground tunnels. J. Sound Vib. 294(4/5), 706–736 (2006)

    Article  Google Scholar 

  15. Hussein, M.F.M., Hunt, H.E.M.: A numerical model for calculating vibration from a railway tunnel embedded in a full-space. J. Sound Vib. 305, 401–431 (2007)

    Article  Google Scholar 

  16. Kuo, K.A., Hunt, H.E.M., Hussein, M.F.M.: The effect of a twin tunnel on the propagation of ground-borne vibration from an underground railway. J. Sound Vib. 330(25), 6203–6222 (2011)

    Article  Google Scholar 

  17. Clot, A., Arcos, R., Romeu, J., et al.: Dynamic response of a double-deck circular tunnel embedded in a full-space. Tunn. Undergr. Space Technol. 59, 146–156 (2016)

    Article  Google Scholar 

  18. Hussein, M.F.M., François, S., Schevenels, M., et al.: The fictitious force method for efficient calculation of vibration from a tunnel embedded in a multi-layered half-space. J. Sound Vib. 333, 6996–7018 (2014)

    Article  Google Scholar 

  19. Zeng, C., Sun, H.L., Cai, Y.Q., et al.: Analysis of three-dimensional dynamic response of a circular lining tunnel in saturated soil to harmonic loading. Rock Soil Mech. 35(04), 1147–1156 (2014). in Chinese

    Google Scholar 

  20. Di, H.G., Zhou, S.H., He, C., et al.: Three-dimensional multilayer cylindrical tunnel model for calculating train-induced dynamic stress in saturated soils. Comput. Geotech. 80, 333–345 (2016)

    Article  Google Scholar 

  21. Di, H.G., Zhou, S.H., Luo, Z., et al.: A vehicle-track-tunnel-soil model for evaluating the dynamic response of a double-line metro tunnel in a poroelastic half-space. Comput. Geotech. 101, 245–363 (2018)

    Article  Google Scholar 

  22. Yuan, Z.H., Boström, A., Cai, Y.Q.: Benchmark solution for vibrations from a moving point source in a tunnel embedded in a half-space. J. Sound Vib. 387, 177–193 (2017)

    Article  Google Scholar 

  23. He, C., Zhou, S.H., Di, H.G., et al.: Analytical method for calculation of ground vibration from a tunnel embedded in a multi-layered half-space. Comput. Geotech. 99, 149–164 (2018)

    Article  Google Scholar 

  24. He, C., Zhou, S.H., Guo, P.J., et al.: Theoretical modelling of the dynamic interaction between twin tunnels in a multi-layered half-space. J. Sound Vib. 456, 65–85 (2019)

    Article  Google Scholar 

  25. He, C., Zhou, S.H., Guo, P.J., et al.: Three-dimensional analytical model for the dynamic interaction of twin tunnels in a homogeneous half-space. Acta Mech. 230, 1159–1179 (2019)

    Article  MathSciNet  Google Scholar 

  26. Brutsaert, W.: The propagation of elastic waves in unconsolidated unsaturated granular mediums. J. Geophys. Res. 69(2), 243–257 (1964)

    Article  Google Scholar 

  27. Vardoulakis, I., Beskos, D.E.: Dynamic behavior of nearly saturated porous media. Mech. Mater. 5, 87–108 (1986)

    Article  Google Scholar 

  28. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A., Shiomi, T.: Computational Geomechanics with Special Reference to Earthquake Engineering. Wiley, New York (1999)

    MATH  Google Scholar 

  29. Zienkiewicz, O.C., Taylor, R.L., Zhu, J.Z.: The Finite Element Method: Its Basis and Fundamentals. Butterworth-Heinemann, Oxford (2005)

    MATH  Google Scholar 

  30. Xu, M.J., Wei, D.M.: 3D non-axisymmetrical dynamic response of unsaturated soils. Eng. Mech. 28(03), 78–85 (2011). in Chinese

    Google Scholar 

  31. Fang, R., Lu, Z., Yao, H.L.: Study on dynamic responses of unsaturated railway subgrade subjected to moving train load. Soil Dyn. Earthq. Eng. 115, 319–323 (2018)

    Article  Google Scholar 

  32. Guo, P.F., Zhou, S.H., Yang, L.C., et al.: Analytical solution of the vertical dynamic response of rock-socked pile considering transverse inertial effect in unsaturated soil. Chin. J. Theor. Appl. Mech. 02, 113–127 (2017). in Chinese

    Google Scholar 

  33. Pao, Y.H., Mow, C.C.: Diffraction of Elastic Waves and Dynamic stress Concentrations. Crane, Russak & Company Inc., New York (1973)

    Book  Google Scholar 

  34. Boström, A., Kristensson, G., Ström, S.: Transformation properties of plane, spherical and cylindrical scalar and vector wave functions. In: Varadan, V.V., Lakhtakia, A., Varadan, V.K. (eds.) Field Representations and Introduction to Scattering, pp. 165–210. Elsevier, Amsterdam (1991)

    Google Scholar 

  35. He, C., Zhou, S.H., Guo, P.J., et al.: A theoretical model on the influence of ring joint stiffness on dynamic responses from underground tunnels. Constr. Build. Mater. 223, 69–80 (2019)

    Article  Google Scholar 

  36. Zhang, M.: Dynamic Response of Piles in Unsaturated Soil and Its Cyclic Loading Testing, Ph.D. Thesis, Central South University (2013)

  37. Xu, M.J.: Investigation on Dynamic Response of Unsaturated Soils and Foundation, Ph.D. Thesis, South China University of Technology (2010)

  38. Gao, G., Yao, S., Yang, J., et al.: Investigating ground vibration induced by moving train loads on unsaturated ground using 2.5D FEM. Soil Dyn. Earthq. Eng. 124, 72–85 (2019)

    Article  Google Scholar 

  39. Sheng, X., Jones, C.J.C., Thompson, D.J.: A theoretical model for ground vibration from trains generated by vertical track irregularities. J. Sound Vib. 272(3), 937–965 (2004)

    Article  Google Scholar 

  40. Pao, Y.H., Mow, C.C.: Diffraction of elastic waves and dynamic stress concentrations. J. Appl. Mech. 40(4), 872 (1973)

    Article  Google Scholar 

Download references

Acknowledgements

The study on which this paper is based was supported by the National Natural Science Foundation of China through the Grant No. 51808405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiji Guo.

Ethics declarations

Conflict of interest

The author(s) declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$ \begin{aligned} & a_{11} = \frac{{c_{1} A_{22} }}{{A_{11} A_{22} - A_{12} A_{21} }},\quad a_{12} = \frac{{A_{22} A_{13} - A_{12} A_{23} }}{{A_{11} A_{22} - A_{12} A_{21} }}, \\ & a_{13} = \frac{{A_{22} A_{14} - A_{12} A_{24} }}{{A_{11} A_{22} - A_{12} A_{21} }},\quad a_{21} = - \frac{{c_{1} A_{21} }}{{A_{11} A_{22} - A_{12} A_{21} }}, \\ & a_{22} = \frac{{A_{11} A_{23} - A_{21} A_{13} }}{{A_{11} A_{22} - A_{12} A_{21} }},\quad a_{23} = \frac{{A_{11} A_{24} - A_{21} A_{14} }}{{A_{11} A_{22} - A_{12} A_{21} }}, \\ \end{aligned} $$
$$ \begin{aligned} & A_{11} = \frac{{c_{2} \gamma - n_{0} S_{r} }}{{K_{s} }} + \frac{{n_{0} S_{r} }}{{K_{l} }},\quad A_{12} = \frac{{c_{2} (1 - \gamma ) - n_{0} (1 - S_{r} )}}{{K_{s} }} + \frac{{n_{0} (1 - S_{r} )}}{{K_{g} }}, \\ & A_{13} = n_{0} S_{r} ,\quad A_{14} = n_{0} (1 - S_{r} ),\quad A_{21} = A_{s} - \frac{{S_{r} (1 - S_{r} )}}{{K_{l} }}, \\ & A_{22} = \frac{{S_{r} (1 - S_{r} )}}{{K_{g} }} - A_{s} ,\quad A_{23} = - A_{24} = - S_{r} (1 - S_{r} ), \\ & c_{1} = 1 - n_{0} - \frac{{K_{b} }}{{K_{s} }},\quad c_{2} = 1 - \frac{{K_{b} }}{{K_{s} }},\quad A_{s} = - \alpha_{1} \alpha_{2} \alpha_{3} (1 - S_{w0} )(S_{e} )^{{\frac{{\alpha_{2} + 1}}{{\alpha_{2} }}}} [(S_{e} )^{{ - \frac{1}{{\alpha_{2} }}}} - 1]^{{\frac{{\alpha_{3} - 1}}{{\alpha_{3} }}}} \\ & K_{b} = \lambda + \frac{2}{3}\mu ,\quad S_{e} = \frac{{S_{r} - S_{w0} }}{{1 - S_{w0} }},\quad \mu = \mu_{s} + \frac{2050}{\alpha }\ln \left( {\sqrt {Se^{ - 2} - 1} + Se^{ - 1} } \right)\tan \varphi , \\ & \lambda = \frac{{2\upsilon_{s} \mu }}{{1 - 2\upsilon_{s} }} \\ \end{aligned} $$

Kl and Kg represent the compression modulus of water and air, respectively. α1, α2, α3 represent the fitting parameters of the VG model curve. υs represents Poisson’s ratio of soil. φ and μs represent the internal friction angle and dynamic shear modulus of saturated soil, respectively.

Appendix B

$$ \begin{aligned} & \lambda_{c} = \lambda + c_{2} \gamma b_{11} + c_{2} (1 - \gamma )b_{21} ,\quad M = c_{2} \gamma b_{12} + c_{2} (1 - \gamma )b_{22} , \\ & N = c_{2} \gamma b_{13} + c_{2} (1 - \gamma )b_{23} ,\quad b_{11} = \frac{{c_{2} a_{12} }}{{c_{1} }} ,\quad b_{12} = \frac{1}{{n_{0} S_{r} }}a_{12} , \\ & b_{13} = \frac{1}{{n_{0} (1 - S_{r} )}}a_{13} ,\quad b_{21} = \frac{{c_{2} a_{21} }}{{c_{1} }} ,\quad b_{22} = \frac{1}{{n_{0} S_{r} }}a_{22} ,\quad b_{23} = \frac{1}{{n_{0} (1 - S_{r} )}}a_{23} , \\ & \vartheta_{l} = \frac{{\rho_{l} }}{{n_{0} S_{r} }} ,\quad \vartheta_{g} = \frac{{\rho_{g} }}{{n_{0} (1 - S_{r} )}} ,\quad d_{l} = \frac{{\eta_{l} }}{{k_{rl} \kappa }} ,\quad d_{g} = \frac{{\eta_{g} }}{{k_{rg} \kappa }}, \\ & k_{rl} = \sqrt {S_{e} } \left\{ {1 - [1 - (S_{e} )^{{1/\alpha_{2} }} ]^{{\alpha_{2} }} } \right\}^{2} ,\quad k_{rg} = \sqrt {1 - S_{e} } [1 - (S_{e} )^{{1/\alpha_{2} }} ]^{{2\alpha_{2} }} , \\ & p = \gamma p_{l} + (1 - \gamma )p_{g} \\ \end{aligned} $$

Appendix C

$$ \begin{aligned} & D_{1} = \lambda_{c} + 2\mu ,\quad D_{2} { = }M ,\quad D_{3} { = }N ,\quad D_{4} = b_{11} ,\quad D_{5} = b_{12} ,\quad D_{6} = b_{13} ,\quad D_{7} = b_{21}, \\ & D_{8} = b_{22} ,\quad D_{9} = b_{23} ,\quad C_{1} = \omega^{2} \rho ,\quad C_{2} = \omega^{2} \rho_{l} ,\quad C_{3} = \omega^{2} \rho_{g} ,\quad C_{4} = \omega^{2} \rho_{l}, \\ & C_{5} = \omega^{2} \vartheta_{1} - {\text{i}}\omega d_{l} ,\quad C_{6} = 0 ,\quad C_{7} = \omega^{2} \rho_{g} ,\quad C_{8} = 0 ,\quad C_{9} = \omega^{2} \vartheta g - {\text{i}}\omega d_{g}, \\ & Ba = D_{1} D_{5} D_{9} + D_{2} D_{6} D_{7} + D_{3} D_{4} D_{8} - (D_{3} D_{5} D_{7} + D_{1} D_{6} D_{8} + D_{2} D_{4} D_{9} ), \\ & Bb = D_{1} D_{5} C_{9} + D_{1} D_{9} C_{5} + D_{5} D_{9} C_{1} + D_{2} D_{6} C_{7} + D_{2} D_{7} C_{6} + D_{6} D_{7} C_{2} \\ & \quad \quad + \;D_{3} D_{4} C_{8} + D_{3} D_{8} C_{4} + D_{4} D_{8} C_{3} - (D_{3} D_{5} C_{7} + D_{3} D_{7} C_{5} + D_{5} D_{7} C_{3} \\ & \quad \quad + \;D_{1} D_{6} C_{8} + D_{1} D_{8} C_{6} + D_{6} D_{8} C_{1} + D_{2} D_{4} C_{9} + D_{2} D_{9} C_{4} + D_{4} D_{9} C_{2} ), \\ & Bc = D_{1} C_{5} C_{9} + D_{5} C_{1} C_{9} + D_{9} C_{1} C_{5} + D_{2} C_{6} C_{7} + D_{6} C_{2} C_{7} + D_{7} C_{2} C_{6} \\ & \quad \quad + \;D_{3} C_{4} C_{8} + D_{4} C_{3} C_{8} + D_{8} C_{3} C_{4} - (D_{3} C_{5} C_{7} + D_{5} C_{3} C_{7} + D_{7} C_{3} C_{5} \\ & \quad \quad + \;D_{1} C_{6} C_{8} + D_{6} C_{1} C_{8} + D_{8} C_{1} C_{6} + D_{2} C_{4} C_{9} + D_{4} C_{2} C_{9} + D_{9} C_{2} C_{4} ), \\ & Bd = C_{1} C_{5} C_{9} + C_{2} C_{6} C_{7} + C_{3} C_{4} C_{8} - (C_{3} C_{5} C_{7} + C_{1} C_{6} C_{8} + C_{2} C_{4} C_{9} ), \\ & Be = \frac{{C_{1} C_{5} C_{9} - C_{3} C_{5} C_{7} - C_{2} C_{4} C_{9} }}{{\mu C_{5} C_{9} }} \\ \end{aligned} $$

Appendix D

$$ \begin{aligned} & Bp = \frac{{3Ba*Bc - Bb^{2} }}{{3Ba^{2} }} ,\quad Bq = \frac{{27Ba^{2} Bd - 9Ba*Bb*Bc + 2Bb^{3} }}{{27Ba^{3} }} ,\quad Bw = \frac{{ - 1 + \sqrt 3 {\text{i}}}}{2}, \\ & k_{1} = \sqrt[3]{{ - \frac{Bq}{2} + \sqrt {\left( {\frac{Bq}{2}} \right)^{2} + \left( {\frac{Bp}{3}} \right)^{3} } }} + \sqrt[3]{{ - \frac{Bq}{2} - \sqrt {\left( {\frac{Bq}{2}} \right)^{2} + \left( {\frac{Bp}{3}} \right)^{3} } }}, \\ & k_{2} = Bw\sqrt[3]{{ - \frac{Bq}{2} + \sqrt {\left( {\frac{Bq}{2}} \right)^{2} + \left( {\frac{Bp}{3}} \right)^{3} } }} + Bw^{2} \sqrt[3]{{ - \frac{Bq}{2} - \sqrt {\left( {\frac{Bq}{2}} \right)^{2} + \left( {\frac{Bp}{3}} \right)^{3} } }}, \\ & k_{3} = Bw^{2} \sqrt[3]{{ - \frac{Bq}{2} + \sqrt {\left( {\frac{Bq}{2}} \right)^{2} + \left( {\frac{Bp}{3}} \right)^{3} } }} + Bw\sqrt[3]{{ - \frac{Bq}{2} - \sqrt {\left( {\frac{Bq}{2}} \right)^{2} + \left( {\frac{Bp}{3}} \right)^{3} } }}, \\ & k_{p1}^{2} = k_{1} - \frac{Bb}{3Ba} ,\quad k_{p2}^{2} = k_{2} - \frac{Bb}{3Ba} ,\quad k_{p3}^{2} = k_{3} - \frac{Bb}{3Ba}, \\ & k_{s}^{2} = \frac{{C_{1} C_{5} C_{9} - C_{3} C_{5} C_{7} - C_{2} C_{4} C_{9} }}{{\mu C_{5} C_{9} }} \\ \end{aligned} $$

Appendix E

$$ \begin{aligned} & Bx1 = D1*( - 1*k_{p1}^{2} ) + C1,\quad Bx2 = D2*( - 1*k_{p1}^{2} ) + C2, \\ & Bx3 = D3*( - 1*k_{p1}^{2} ) + C3,\quad Bx4 = D4*( - 1*k_{p1}^{2} ) + C4, \\ & Bx5 = D5*( - 1*k_{p1}^{2} ) + C5,\quad Bx6 = D6*( - 1*k_{p1}^{2} ) + C6, \\ & By1 = D1*( - 1*k_{p2}^{2} ) + C1,\quad By2 = D2*( - 1*k_{p2}^{2} ) + C2, \\ & By3 = D3*( - 1*k_{p2}^{2} ) + C3,\quad By4 = D4*( - 1*k_{p2}^{2} ) + C4, \\ & By5 = D5*( - 1*k_{p2}^{2} ) + C5,\quad By6 = D6*( - 1*k_{p2}^{2} ) + C6, \\ & Bz1 = D1*( - 1*k_{p3}^{2} ) + C1,\quad Bz2 = D2*( - 1*k_{p3}^{2} ) + C2, \\ & Bz3 = D3*( - 1*k_{p3}^{2} ) + C3,\quad Bz4 = D4*( - 1*k_{p3}^{2} ) + C4, \\ & Bz5 = D5*( - 1*k_{p3}^{2} ) + C5,\quad Bz6 = D6*( - 1*k_{p3}^{2} ) + C6, \\ & \mu_{1l} = \frac{Bx3*Bx4 - Bx1*Bx6}{Bx2*Bx6 - Bx3*Bx5},\quad \mu_{2l} = \frac{By3*By4 - By1*By6}{By2*By6 - By3*By5}, \\ & \mu_{3l} = \frac{Bz3*Bz4 - Bz1*Bz6}{Bz2*Bz6 - Bz3*Bz5},\quad \mu_{1g} = \frac{Bx2*Bx4 - Bx1*Bx5}{Bx3*Bx5 - Bx2*Bx6}, \\ & \mu_{2g} = \frac{By2*By4 - By1*By5}{By3*By5 - By2*By6},\quad \mu_{3g} = \frac{Bz2*Bz4 - Bz1*Bz5}{Bz3*Bz5 - Bz2*Bz6}, \\ & \mu_{tl} = - \frac{C4}{C5},\quad \mu_{tg} = - \frac{C7}{C9} \\ \end{aligned} $$

Appendix F

$$ \begin{aligned} & A_{p1}^{l} = - (b_{11} + b_{12} \mu_{1l} + b_{13} \mu_{1g} ), \\ & A_{p2}^{l} = - (b_{11} + b_{12} \mu_{2l} + b_{13} \mu_{2g} ), \\ & A_{p3}^{l} = - (b_{11} + b_{12} \mu_{3l} + b_{13} \mu_{3g} ), \\ & A_{p1}^{g} = - (b_{21} + b_{22} \mu_{1l} + b_{23} \mu_{1g} ), \\ & A_{p2}^{g} = - (b_{21} + b_{22} \mu_{2l} + b_{23} \mu_{2g} ), \\ & A_{p3}^{g} = - (b_{21} + b_{22} \mu_{3l} + b_{23} \mu_{3g} ) \\ \end{aligned} $$

Appendix G

$$ \begin{aligned} & E1 = - a\gamma (b_{11} + b_{12} \mu_{1l} + b_{13} \mu_{1g} ), \\ & E2 = - a\gamma (b_{11} + b_{12} \mu_{2l} + b_{13} \mu_{2g} ), \\ & E3 = - a\gamma (b_{11} + b_{12} \mu_{3l} + b_{13} \mu_{3g} ), \\ & E4 = - a(1 - \gamma )(b_{21} + b_{22} \mu_{1l} + b_{23} \mu_{1g} ), \\ & E5 = - a(1 - \gamma )(b_{21} + b_{22} \mu_{2l} + b_{23} \mu_{2g} ), \\ & E6 = - a(1 - \gamma )(b_{21} + b_{22} \mu_{3l} + b_{23} \mu_{3g} ) \\ \end{aligned} $$

Appendix H

$$ \begin{aligned} & \varvec{S} = \frac{ - Eh}{{r_{1} (1 - \upsilon^{2} )}}\left[ {\begin{array}{*{20}c} {s_{11} } &\quad {s_{12} } &\quad {s_{13} } \\ {s_{21} } &\quad {s_{22} } &\quad {s_{23} } \\ {s_{31} } &\quad {s_{32} } &\quad {s_{33} } \\ \end{array} } \right], \\ & s_{11} { = }\frac{{\rho_{t} r_{1} (1 - \upsilon^{2} )}}{E}\omega^{2} - r_{1} \xi^{2} - \frac{(1 - \upsilon )}{{2r_{1} }}\left( {1 + \frac{{h^{2} }}{{12r_{1}^{2} }}} \right)m^{2} , \\ & s_{12} = - \frac{(1 + \upsilon )}{2}\xi m ,\quad s_{13} = - \upsilon i\xi + \frac{{h^{2} }}{12}({\text{i}}\xi )^{3} + \frac{{h^{2} }}{{12r_{1}^{2} }}\frac{(1 - \upsilon )}{2}{\text{i}}\xi m^{2} , \\ & s_{21} = - \frac{(1 + \upsilon )}{2}\xi m, \\ & s_{22} = \frac{{\rho_{t} r{}_{1}(1 - \upsilon^{2} )}}{E}\omega^{2} - \frac{{r_{1} (1 - \upsilon )}}{2}\left( {1 + \frac{{h^{2} }}{{4r_{1}^{2} }}} \right)\xi^{2} - \frac{1}{{r_{1} }}m^{2} , \\ & s_{23} = - \frac{\text{i}}{{r_{1} }}m - {\text{i}}\frac{{h^{2} }}{12}\frac{(3 - \upsilon )}{{2r_{1} }}\xi^{2} m ,\quad s_{31} = \upsilon {\text{i}}\xi - \frac{{h^{2} }}{12}({\text{i}}\xi )^{3} - \frac{{h^{2} }}{{12r_{1}^{2} }}\frac{(1 - \upsilon )}{2}{\text{i}}\xi m^{2} , \\ & s_{32} = \frac{\text{i}}{{r_{1} }}m + {\text{i}}\frac{{h^{2} }}{12}\frac{(3 - \upsilon )}{{2r_{1} }}\xi^{2} m, \\ & s_{33} = \frac{{\rho_{t} r_{1} (1 - \upsilon^{2} )}}{E}\omega^{2} - \frac{{h^{2} }}{12}\left( {r_{1} \xi^{4} + \frac{2}{{r_{1} }}\xi^{2} m^{2} + \frac{1}{{r_{1}^{3} }}m^{4} } \right) - \frac{1}{{r_{1} }} + \frac{{h^{2} }}{{12r_{1}^{3} }}(2m^{2} - 1) \\ \end{aligned} $$

r1, h, E, υ, and ρt represent the radius, thickness, Young’s modulus, Poisson’s ratio and density of the shell, respectively. qr, qθ, and qz represent the net stresses along the r-, θ-, and z-directions of the central surface of the lining shell, respectively.

Appendix I

$$ I_{mj} = i^{ - m} \left\{ {\begin{array}{*{20}l} {e^{{im\beta_{s} }} }, \hfill \\ {e^{{im\beta_{s} }} }, \hfill \\ {e^{{im\beta_{p1} }} }, \hfill \\ {e^{{im\beta_{p2} }} }, \hfill \\ {e^{{im\beta_{p3} }} }, \hfill \\ \end{array} \begin{array}{*{20}l} {\beta_{s} = \arcsin (k_{y} /k_{sr} ),} \hfill \\ {\beta_{s} = \arcsin (k_{y} /k_{sr} ),} \hfill \\ {\beta_{p1} = \arcsin (k_{y} /k_{p1r} ),} \hfill \\ {\beta_{p2} = \arcsin (k_{y} /k_{p2r} ),} \hfill \\ {\beta_{p3} = \arcsin (k_{y} /k_{p3r} ),} \hfill \\ \end{array} \begin{array}{*{20}l} {h_{j} = k_{sx} }, \hfill \\ {h_{j} = k_{sx} }, \hfill \\ {h_{j} = k_{p1x} }, \hfill \\ {h_{j} = k_{p2x} }, \hfill \\ {h_{j} = k_{p3x} }, \hfill \\ \end{array} \begin{array}{*{20}l} {j = 1} \hfill \\ {j = 2} \hfill \\ {j = 3} \hfill \\ {j = 4} \hfill \\ {j = 5} \hfill \\ \end{array} } \right. $$

Appendix J

$$ \left[ {K_{{jj^{\prime}}} } \right] = - 2\left[ {\begin{array}{*{20}c} {\hat{\bar{\tilde{U}}}_{1}^{d} } &\quad {\hat{\bar{\tilde{U}}}_{2}^{d} } &\quad {\hat{\bar{\tilde{U}}}_{3}^{d} } &\quad {\hat{\bar{\tilde{U}}}_{4}^{d} } &\quad {\hat{\bar{\tilde{U}}}_{5}^{d} } \\ 0 &\quad 0 &\quad {\hat{\bar{\tilde{\vartheta }}}_{{l{\kern 1pt} p1}}^{d} } &\quad {\hat{\bar{\tilde{\vartheta }}}_{{l{\kern 1pt} p2}}^{d} } &\quad {\hat{\bar{\tilde{\vartheta }}}_{{l{\kern 1pt} p3}}^{d} } \\ 0 &\quad 0 &\quad {\hat{\bar{\tilde{\vartheta }}}_{{g{\kern 1pt} p1}}^{d} } &\quad {\hat{\bar{\tilde{\vartheta }}}_{{g{\kern 1pt} p2}}^{d} } &\quad {\hat{\bar{\tilde{\vartheta }}}_{{g{\kern 1pt} p3}}^{d} } \\ \end{array} } \right]^{{ - 1}} \left[ {\begin{array}{*{20}c} {\hat{\bar{\tilde{U}}}_{1}^{u} } &\quad {\hat{\bar{\tilde{U}}}_{2}^{u} } &\quad {\hat{\bar{\tilde{U}}}_{3}^{u} } &\quad {\hat{\bar{\tilde{U}}}_{4}^{u} } &\quad {\hat{\bar{\tilde{U}}}_{5}^{u} } \\ 0 &\quad 0 &\quad {\hat{\bar{\tilde{\vartheta }}}_{{l{\kern 1pt} p1}}^{u} } &\quad {\hat{\bar{\tilde{\vartheta }}}_{{l{\kern 1pt} p2}}^{u} } &\quad {\hat{\bar{\tilde{\vartheta }}}_{{l{\kern 1pt} p3}}^{u} } \\ 0 &\quad 0 &\quad {\hat{\bar{\tilde{\vartheta }}}_{{g{\kern 1pt} p1}}^{u} } &\quad {\hat{\bar{\tilde{\vartheta }}}_{{g{\kern 1pt} p2}}^{u} } &\quad {\hat{\bar{\tilde{\vartheta }}}_{{g{\kern 1pt} p3}}^{u} } \\ \end{array} } \right] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, H., Zhou, S., Guo, H. et al. Three-dimensional analytical model for vibrations from a tunnel embedded in an unsaturated half-space. Acta Mech 232, 1543–1562 (2021). https://doi.org/10.1007/s00707-020-02892-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02892-4

Navigation