Skip to main content
Log in

Cracked elastic layer with surface elasticity under antiplane shear loading

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A mode-III crack embedded in a homogeneous isotropic elastic layer of nanoscale finite thickness is studied in this article. The classical elasticity incorporating surface elasticity is employed to reduce a nonclassical mixed boundary value problem, where the layer interior obeys the traditional constitutive relation and the surfaces of the layer and the crack are dominated by the surface constitutive relation. Using the Fourier transform, we convert the problem to a hypersingular integro-differential equation for the out-of-plane displacement on the crack faces. By expanding the out-of-plane displacement as series of Chebyshev polynomials, the Galerkin method is invoked to reduce the singular integro-differential equation with Cauchy kernel to a set of algebraic linear equations for the unknown coefficients. An approximate solution is determined, and the influences of surface elasticity on the elastic field and stress intensity factor are examined and displayed graphically. It is shown that surface elasticity decreases the bulk stress and its intensity factor near the crack tips for positive surface shear modulus and gives rise to an opposite trend for a negative surface shear modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang, H.: Ultrathin two-dimensional nanomaterials. ACS Nano 9(10), 9451–9469 (2015)

    Article  Google Scholar 

  2. Yang, G., Zhu, C., Du, D., Zhu, J., Lin, Y.: Graphene-like two-dimensional layered nanomaterials: applications in biosensors and nanomedicine. Nanoscale 7, 14217–14231 (2015)

    Article  Google Scholar 

  3. Poncharal, P., Wang, Z.L., Ugarte, D., de Heer, W.A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283(5407), 1513–1516 (1999)

    Article  Google Scholar 

  4. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139–147 (2000)

    Article  Google Scholar 

  5. Dingreville, R., Qu, J., Cherkaoui, M.: Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J. Mech. Phys. Solids 53(8), 1827–1854 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cammarata, R.C.: Surface and interface stress effects in thin films. Prog. Surf. Sci. 46(1), 1–38 (1994)

    Article  Google Scholar 

  8. Ru, C.Q.: Simple geometrical explanation of Gurtin–Murdoch model of surface elasticity with clarification of its related versions. Sci. China A 53(3), 536–544 (2010)

    MathSciNet  Google Scholar 

  9. Wang, J., Huang, Z., Duan, H., Yu, S., Feng, X., Wang, G., Zhang, W., Wang, T.: Surface stress effect in mechanics of nanostructured materials. Acta Mech. Solida Sin. 24(1), 52–82 (2011)

    Article  Google Scholar 

  10. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  MATH  Google Scholar 

  11. Wu, C.H.: The effect of surface stress on the configurational equilibrium of voids and cracks. J. Mech. Phys. Solids 47(12), 2469–2492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Shodja, H.M., Ahmadzadeh-Bakhshayesh, H., Gutkin, M.Y.: Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects. Int. J. Solids Struct. 49(5), 759–770 (2012)

    Article  Google Scholar 

  13. Hu, Z.-L., Lee, K., Li, X.-F.: Crack in an elastic thin-film with surface effect. Int. J. Eng. Sci. 123, 158–173 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, G.F., Feng, X.-Q., Wang, T.H., Gao, W.: Surface effects on the near-tip stresses for mode-I and mode-III cracks. J. Appl. Mech. 75, 011001 (2008)

    Article  Google Scholar 

  15. Kim, C., Schiavone, P., Ru, C.Q.: The effects of surface elasticity on an elastic solid with mode-III crack: complete solution. J. Appl. Mech. 77, 021011 (2010)

    Article  Google Scholar 

  16. Kim, C.I., Schiavone, P., Ru, C.-Q.: Analysis of plane-strain crack problems mode-I and mode-II in the presence of surface elasticity. J. Elast. 104(1–2), 397–420 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Walton, J.R.: A note on fracture models incorporating surface elasticity. J. Elast. 109(1), 95–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kim, C.I., Ru, C.-Q., Schiavone, P.: A clarification of the role of crack-tip conditions in linear elasticity with surface effects. Math. Mech. Solids 18(1), 59–66 (2013)

    Article  MathSciNet  Google Scholar 

  19. Antipov, Y.A., Schiavone, P.: Integro-differential equation for a finite crack in a strip with surface effects. Q. J. Mech. Appl. Math. 64(1), 87–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, Z.-L., Li, X.-F.: A rigid line inclusion in an elastic film with surface elasticity. Z Angew. Math. Phys. (ZAMP) 69(4) (2018)

  21. Li, X.-F.: Effect of surface elasticity on stress intensity factors near mode-III crack tips. J. Mech. Mater. Struct. 14(1), 43–60 (2019)

    Article  MathSciNet  Google Scholar 

  22. Yang, Y., Hu, Z.-L., Li, X.-F.: Nanoscale mode-III interface crack in a bimaterial with surface elasticity. Mech. Mater. 140, 103246 (2020)

    Article  Google Scholar 

  23. Gorbushin, N., Eremeyev, V., Mishuris, G.: On stress singularity near the tip of a crack with surface stresses. Int. J. Eng. Sci. 146, 103183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shodja, H., Ghafarollahi, A., Enzevaee, C.: Surface/interface effect on the scattering of Love waves by a nano-size surface-breaking crack within an ultra-thin layer bonded to an elastic half-space. Int. J. Solids Struct. 108, 63–73 (2017)

    Article  Google Scholar 

  25. Wang, H., Li, X.F., Tang, G.J., Shen, Z.B.: Effect of surface stress on stress intensity factors of a nanoscale crack via double cantilever beam model. J. Nanosci. Nanotechnol. 13(1), 477–482 (2013)

    Article  Google Scholar 

  26. Yang, Y., Lee, K.Y., Li, X.F.: Surface effects on delamination of a thin film bonded to an elastic substrate. Int. J. Fract. 210(1–2), 81–94 (2018)

    Article  Google Scholar 

  27. Steigmann, D.J., Ogden, R.W.: A necessary condition for energy-minimizing plane deformations of elastic solids with intrinsic boundary elasticity. Math. Mech. Solids 2(1), 3–16 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Steigmann, D.J., Ogden, R.W.: Plane deformations of elastic solids with intrinsic boundary elasticity. Proc. R. Soc. Lond. Ser. A 453(1959), 853–877 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Steigmann, D.J., Ogden, R.W.: Elastic surface-substrate interactions. Proc. R. Soc. Lond. Ser. A 455(1999), 437–474 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sendova, T., Walton, J.: A new approach to the modeling and analysis of fracture through extension of continuum mechanics to the nanoscale. Math. Mech. Solids 15(3), 368–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ferguson, L., Muddamallappa, M., Walton, J.: Numerical simulation of mode-III fracture incorporating interfacial mechanics. Int. J. Fract. 192(1), 47–56 (2015)

    Article  Google Scholar 

  32. Sigaeva, T., Schiavone, P.: The effect of surface stress on an interface crack in linearly elastic materials. Math. Mech. Solids 21(6), 649–656 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zemlyanova, A.: A straight mixed mode fracture with the Steigmann–Ogden boundary condition. Q. J. Mech. Appl. Math. 70(1), 65–86 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kaya, A.C., Erdogan, F.: On the solution of integral equations with strongly singular kernels. Q. Appl. Math. 45(1), 105–122 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Frankel, J.I.: A Galerkin solution to a regularized Cauchy singular integro-differential equation. Q. Appl. Math. 53(2), 245–258 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  36. Badr, A.A.: Integro-differential equation with Cauchy kernel. J. Comput. Appl. Math. 134, 191–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mason, J.C., Handscomb, D.C.: Chebyshev Polynomials. Chapman and Hall, London (2002)

    Book  MATH  Google Scholar 

  38. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Gaithersburg (1948)

    MATH  Google Scholar 

  39. Sharma, P., Ganti, S.: Size-dependent Eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies. J. Appl. Mech. 71(4), 663–671 (2004)

    Article  MATH  Google Scholar 

  40. Sharma, P., Wheeler, L.: Size-dependent elastic state of ellipsoidal nano-inclusions incorporating surface/interface tension. J. Appl. Mech. 74, 447–454 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Li, X.-F., Tang, G.-J.: Antiplane interface crack between two bonded dissimilar piezoelectric layers. Eur. J. Mech. A. Solids 22(2), 231–242 (2003)

    Article  MATH  Google Scholar 

  42. Lu, P., Lee, H., Lu, C., O’Shea, S.: Surface stress effects on the resonance properties of cantilever sensors. Phys. Rev. B 72, 085405 (2005)

    Article  Google Scholar 

  43. Lang, X.Y., Zhu, Y.F., Jiang, Q.: Size and interface effects on several kinetic and thermodynamic properties of polymer thin films. Thin Solid Films 515(4), 2765–2770 (2006)

    Article  Google Scholar 

  44. Shodja, H.M., Enzevaee, C.: Surface characterization of face-centered cubic crystals. Mech. Mater. 129, 15–22 (2019)

    Article  Google Scholar 

  45. Shenoy, V.B.: Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Phys. Rev. B 71(9), 094104 (2005)

    Article  Google Scholar 

  46. http://universe-review.ca/R01-05-unitscons.htm#solids

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11672336, 11872379) and the Fundamental Research Funds for the Central Universities of Central South University (No. 2019zzts872).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-Fang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Hu, ZL. & Li, XF. Cracked elastic layer with surface elasticity under antiplane shear loading. Acta Mech 231, 3085–3098 (2020). https://doi.org/10.1007/s00707-020-02695-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02695-7

Navigation