Skip to main content
Log in

Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A geometric transformation method based on discrete singular convolution (DSC) is firstly applied to solve the buckling problem of a functionally graded carbon nanotube (FG-CNT)-reinforced composite skew plate. The straight-sided quadrilateral plate geometry is mapped into a square domain in the computational space using a four-node DSC transformation method. Hence, the related governing equations of plate buckling and boundary conditions of the problem are transformed from the physical domain into a square computational domain by using the geometric transformation-based singular convolution. The discretization process is achieved via the DSC method together with numerical differential and two different regularized kernels such as regularized Shannon’s delta and Lagrange-delta sequence kernels. The accuracy of the present DSC results is first verified, and then, a detailed parametric study is presented to show the impacts of CNT volume fraction, CNT distribution pattern, geometry of the skew plate and skew angle on the axial and biaxial buckling responses of FG-CNTR composite skew plates with different boundary conditions. Some new results related to critical buckling of an FG-CNT-reinforced composite skew plate are also presented, which can serve as benchmark solutions for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Timoshenko, S.P., Gere, J.M.: Theory of Elastic Stability. McGraw-Hill, Auckland (1963)

    Google Scholar 

  2. Chajes, A.: Principles of Structural Stability Theory. Prentice Hall, Englewood Cliffs (1974)

    Google Scholar 

  3. Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates, and Shells. McGraw-Hill, Kogakusha (1975)

    MATH  Google Scholar 

  4. Simitses, G.J.: An introduction to the elastic stability of structures. Prentice-Hall, Englewood Cliffs, NJ (1976)

    Google Scholar 

  5. Hughes, T.J.R., Taylor, R.L., Kanoknukulchai, W.: A simple and efficient finite element for plate bending. Int. J. Numer. Methods Eng. 11, 1529–1543 (1977)

    MATH  Google Scholar 

  6. Carnoy, E.G., Hughes, T.J.R.: Finite element analysis of the secondary buckling of a flat plate under uniaxial compression. Int. J. Nonlinear Mech. 18, 167–175 (1983)

    MATH  Google Scholar 

  7. Iyengar, N.G.R.: Structural Stability of Columns and Plates. Ellis Horwood Ltd, Chichester (1988)

    MATH  Google Scholar 

  8. Bažant, Z.P., Cedolin, L.: Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories. Oxford University Press, New York (1991)

    MATH  Google Scholar 

  9. Engel, G., Garikipati, K., Hughes, T.J.R., Larson, M.G., Mazzei, L., Taylor, R.L.: Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. Comput. Methods Appl. Mech. 191, 3669–3750 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Civalek, O., Acar, M.H.: Discrete singular convolution method for the analysis of Mindlin plates on elastic foundations. Int. J. Press. Vessels Pip. 84, 527–535 (2007)

    Google Scholar 

  11. Kitipornchai, S., Xiang, Y., Wang, C.M., Liew, K.M.: Buckling of thick skew plates. Int. J. Numer. Meth. Eng. 36, 1299–1310 (1993)

    MATH  Google Scholar 

  12. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2003)

    Google Scholar 

  13. Qatu, M.S.: Vibration of Laminated Shells and Plates, 1st edn. Academic Press, Amsterdam (2004)

    MATH  Google Scholar 

  14. Civalek, O.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26, 171–186 (2004)

    Google Scholar 

  15. Wang, C.M., Wang, C.M., Wang, C.Y., Reddy, J.N.: Exact solutions for Buckling of Structural Members. CRC Press, Boca Raton (2005)

    Google Scholar 

  16. Abdollahi, M., Saidi, A.R., Mohammadi, M.: Buckling analysis of thick functionally graded piezoelectric plates based on the higher-order shear and normal deformable theory. Acta Mech. 226, 2497–2510 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Shen, H.-S.: Functionally Graded Materials: Nonlinear Analysis of Plates and Shells. CRC Press, Boca Raton (2016)

    Google Scholar 

  18. Shen, H.-S.: Postbuckling Behavior of Plates and Shells. World Scientific Pub. Co. Inc, New Jersey (2017)

    Google Scholar 

  19. Zhang, L.W., Liew, K.M., Reddy, J.N.: Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression. Comput. Method. Appl. M. 298, 1–28 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Jaberzadeh, E., Azhari, M.: Local buckling of moderately thick stepped skew viscoelastic composite plates using the element-free Galerkin method. Acta Mech. 226, 1011–1025 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Kiani, Y.: Buckling of FG-CNT-reinforced composite plates subjected to parabolic loading. Acta Mech. 228, 1303–1319 (2017)

    MathSciNet  Google Scholar 

  22. Upadhyay, A.K., Shukla, K.K.: Post-buckling analysis of skew plates subjected to combined in-plane loadings. Acta Mech. 225, 2959–2968 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Van Do, V.N., Lee, C.H.: A new n-th-order shear deformation theory for isogeometric thermal buckling analysis of FGM plates with temperature-dependent material properties. Acta Mech. 230, 3783–3805 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Frikha, A., Zghal, S., Dammak, F.: Finite rotation three and four nodes shell elements for functionally graded carbon nanotubes-reinforced thin composite shells analysis. Comput. Method. Appl. Mech. Eng. 329, 289–311 (2018)

    MathSciNet  MATH  Google Scholar 

  25. Mehri, M., Asadi, H., Wang, Q.: Buckling and vibration analysis of a pressurized CNT reinforced functionally graded truncated conical shell under an axial compression using HDQ method. Comput. Method. Appl. Mech. Eng. 303, 75–100 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Liew, K.M., Chen, X.L., Reddy, J.N.: Mesh-free radial basis function method for buckling analysis of non-uniformly loaded arbitrarily shaped shear deformable plates. Comput. Method. Appl. Mech. Eng. 193, 205–224 (2004)

    MATH  Google Scholar 

  27. Huang, Y.Q., Li, Q.S.: Bending and buckling analysis of antisymmetric laminates using the moving least square differential quadrature method. Comput. Method. Appl. Mech. Eng. 193, 3471–3492 (2004)

    MATH  Google Scholar 

  28. Wang, C.M., Liew, K.M., Xiang, Y., Kitipornchai, S.: Buckling of rectangular mindlin plates with internal line supports. Int. J. Solids Struct. 30, 1–17 (1993)

    MATH  Google Scholar 

  29. Liew, K.M., Lei, Z.X., Yu, J.L., Zhang, L.W.: Postbuckling of carbon nanotube-reinforced functionally graded cylindrical panels under axial compression using a meshless approach. Comput. Method. Appl. Mech. Eng. 268, 1–17 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Khdeir, A.A., Librescu, L.: Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: part II–Buckling and free vibration. Compos. Struct. 9, 259–277 (1988)

    Google Scholar 

  31. Fantuzzi, N., Tornabene, F., Bacciocchi, M., Dimitri, R.: Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates. Compos. Part B Eng. 115, 384–408 (2017)

    Google Scholar 

  32. Tornabene, F., Bacciocchi, M., Fantuzzi, N., Reddy, J.N.: Multiscale approach for three-phase CNT/polymer/fiber laminated nanocomposite structures. Polym. Compos. 40, E102–E126 (2019)

    Google Scholar 

  33. Zhang, L.W., Lei, Z.X., Liew, K.M.: Buckling analysis of FG-CNT reinforced composite thick skew plates using an element-free approach. Compos. Part B Eng. 75, 36–46 (2015)

    MATH  Google Scholar 

  34. Lei, Z.X., Zhang, L.W., Liew, K.M.: Buckling of FG-CNT reinforced composite thick skew plates resting on Pasternak foundations based on an element-free approach. Appl. Math. Comput. 266, 773–791 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Shahrestani, M.G., Azhari, M., Foroughi, H.: Elastic and inelastic buckling of square and skew FGM plates with cutout resting on elastic foundation using isoparametric spline finite strip method. Acta Mech. 229, 2079–2096 (2018)

    MathSciNet  MATH  Google Scholar 

  36. Shen, H.-S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Google Scholar 

  37. Shen, H.-S.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Compos. Part B Eng. 43, 1030–1038 (2012)

    Google Scholar 

  38. Shen, H.-S., Zhang, C.-L.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Design. 31, 3403–3411 (2010)

    Google Scholar 

  39. Alibeigloo, A., Liew, K.M.: Thermoelastic analysis of functionally graded carbon nanotube-reinforced composite plate using theory of elasticity. Compos. Struct. 106, 873–881 (2013)

    Google Scholar 

  40. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)

    Google Scholar 

  41. Phung-Van, P., Nguyen-Thoi, T., Luong-Van, H., Lieu-Xuan, Q.: Geometrically nonlinear analysis of functionally graded plates using a cell-based smoothed three-node plate element (CS-MIN3) based on the C0-HSDT. Comput. Method. Appl. Mech. Eng. 270, 15–36 (2014)

    MATH  Google Scholar 

  42. Phung-Van, P., Abdel-Wahab, M., Liew, K.M., Bordas, S.P.A., Nguyen-Xuan, H.: Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Compos. Struct. 123, 137–149 (2015)

    Google Scholar 

  43. Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Bég, O.A., Mahmoud, S.R.: Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos. Struct. 18, 425 (2015)

    Google Scholar 

  44. Kiani, Y.: Shear buckling of FG-CNT reinforced composite plates using Chebyshev–Ritz method. Compos. Part B Eng. 105, 176–187 (2016)

    Google Scholar 

  45. Demir, Ç., Mercan, K., Civalek, Ö.: Determination of critical buckling loads of isotropic, FGM and laminated truncated conical panel. Compos. Part B Eng. 94, 1–10 (2016)

    Google Scholar 

  46. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R., Alwabli, A.S.: An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions. Steel Compos. Struct. 25, 693 (2017)

    Google Scholar 

  47. Kiani, Y.: Thermal post-buckling of FG-CNT reinforced composite plates. Compos. Struct. 159, 299–306 (2017)

    Google Scholar 

  48. Akgöz, B., Civalek, Ö.: Effects of thermal and shear deformation on vibration response of functionally graded thick composite microbeams. Compos. Part B Eng. 129, 77–87 (2017)

    Google Scholar 

  49. Nguyen, T.N., Thai, C.H., Nguyen-Xuan, H., Lee, J.: NURBS-based analyses of functionally graded carbon nanotube-reinforced composite shells. Compos. Struct. 203, 349–360 (2018)

    MATH  Google Scholar 

  50. Nguyen-Quang, K., Vo-Duy, T., Dang-Trung, H., Nguyen-Thoi, T.: An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers. Comput. Method. Appl. Mech. Eng. 332, 25–46 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Nguyen, T.N., Thai, C.H., Luu, A.-T., Nguyen-Xuan, H., Lee, J.: NURBS-based postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells. Comput. Method. Appl. Mech. Eng. 347, 983–1003 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Wei, G.W.: A new algorithm for solving some mechanical problems. Comput. Method. Appl. Mech. Eng. 190, 2017–2030 (2001)

    MathSciNet  MATH  Google Scholar 

  53. Wei, G.W.: Vibration analysis by discrete singular convolution. J. Sound. Vib. 244, 535–553 (2001)

    MathSciNet  MATH  Google Scholar 

  54. Wei, G.W., Zhao, Y.B., Xiang, Y.: The determination of natural frequencies of rectangular plates with mixed boundary conditions by discrete singular convolution. Int. J. Mech. Sci. 43, 1731–1746 (2001)

    MATH  Google Scholar 

  55. Wei, G.W., Zhao, Y.B., Xiang, Y.: Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm. Int. J. Numer. Meth. Eng. 55, 913–946 (2002)

    MATH  Google Scholar 

  56. Ng, C.H.W., Zhao, Y.B., Wei, G.W.: Comparison of discrete singular convolution and generalized differential quadrature for the vibration analysis of rectangular plates. Comput. Method. Appl. Mech. Eng. 193, 2483–2506 (2004)

    MATH  Google Scholar 

  57. Hoffman, D.K., Wei, G.W., Zhang, D.S., Kouri, D.J.: Shannon-Gabor wavelet distributed approximating functional. Chem. Phys. Lett. 287, 119–124 (1998)

    Google Scholar 

  58. Yang, S.Y., Zhou, Y.C., Wei, G.W.: Comparison of the discrete singular convolution algorithm and the Fourier pseudospectral method for solving partial differential equations. Comput. Phys. Commun. 143, 113–135 (2002)

    MathSciNet  MATH  Google Scholar 

  59. Wan, D.C., Zhou, Y.C., Wei, G.W.: Numerical solution of incompressible flows by discrete singular convolution. Int. J. Numer. Meth. Fl. 38, 789–810 (2002)

    MathSciNet  MATH  Google Scholar 

  60. Wang, Y., Zhao, Y.B., Wei, G.W.: A note on the numerical solution of high-order differential equations. J. Comput. Appl. Math. 159, 387–398 (2003)

    MathSciNet  MATH  Google Scholar 

  61. Shao, Z., Shen, Z., He, Q., Wei, G.: A generalized higher order finite-difference time-domain method and its application in guided-wave problems. IEEE Trans. Microw. Theory 51, 856–861 (2003)

    Google Scholar 

  62. Yu, S., Zhao, S., Wei, G.W.: Local spectral time splitting method for first- and second-order partial differential equations. J. Comput. Phys. 206, 727–780 (2005)

    MathSciNet  MATH  Google Scholar 

  63. Zhang, L., Xiang, Y., Wei, G.W.: Local adaptive differential quadrature for free vibration analysis of cylindrical shells with various boundary conditions. Int. J. Mech. Sci. 48, 1126–1138 (2006)

    MATH  Google Scholar 

  64. Civalek, O.: Linear vibration analysis of isotropic conical shells by discrete singular convolution (DSC). Struct. Eng. Mech. 25, 127 (2007)

    MATH  Google Scholar 

  65. Civalek, Ö.: Vibration analysis of conical panels using the method of discrete singular convolution. Commun. Numer. Meth. Eng. 24, 169–181 (2008)

    MathSciNet  MATH  Google Scholar 

  66. Akgoz, B., Civalek, O.: Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations. Steel Compos. Struct. 11, 403 (2011)

    Google Scholar 

  67. Civalek, Ö.: Nonlinear dynamic response of laminated plates resting on nonlinear elastic foundations by the discrete singular convolution-differential quadrature coupled approaches. Compos. Part B Eng. 50, 171–179 (2013)

    Google Scholar 

  68. Civalek, Ö., Akgöz, B.: Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix. Comput. Mater. Sci. 77, 295–303 (2013)

    Google Scholar 

  69. Mercan, K., Civalek, Ö.: DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix. Compos. Struct. 143, 300–309 (2016)

    Google Scholar 

  70. Civalek, Ö.: Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method. Compos. Part B Eng. 111, 45–59 (2017)

    Google Scholar 

  71. Mercan, K., Civalek, Ö.: Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ. Compos. Part B Eng. 114, 34–45 (2017)

    Google Scholar 

  72. Zhao, X., Zhang, Q., Chen, D., Lu, P.: Enhanced mechanical properties of Graphene-Based Poly(vinyl alcohol) composites. Macromolecules 43, 2357–2363 (2010)

    Google Scholar 

  73. Ji, X.-Y., Cao, Y.-P., Feng, X.-Q.: Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Modelling Simul. Mater. Sci. Eng. 18, 045005 (2010)

    Google Scholar 

  74. Kwon, H., Bradbury, C.R., Leparoux, M.: Fabrication of functionally graded carbon nanotube-reinforced aluminum matrix composite. Adv. Eng. Mater. 13, 325–329 (2011)

    Google Scholar 

  75. Rahman, R., Haque, A.: Molecular modeling of crosslinked graphene-epoxy nanocomposites for characterization of elastic constants and interfacial properties. Compos. Part B Eng. 54, 353–364 (2013)

    Google Scholar 

  76. King, J.A., Klimek, D.R., Miskioglu, I., Odegard, G.M.: Mechanical properties of graphene nanoplatelet/epoxy composites. J. Appl. Polym. Sci. 128, 4217–4223 (2013)

    Google Scholar 

  77. Wang, F., Drzal, L.T., Qin, Y., Huang, Z.: Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J. Mater. Sci. 50, 1082–1093 (2015)

    Google Scholar 

  78. Spanos, K.N., Georgantzinos, S.K., Anifantis, N.K.: Mechanical properties of graphene nanocomposites: a multiscale finite element prediction. Compos. Struct. 132, 536–544 (2015)

    Google Scholar 

  79. Di Sciuva, M.: An improved shear-deformation theory for moderately thick multilayered shells and plates. J. Appl. Mech. 54(1), 589–96 (1987)

    MATH  Google Scholar 

  80. Murakami, H.: Laminated composite plate theory with improved in-plane responses. J. Appl. Mech. 53(1), 661 (1986)

    MATH  Google Scholar 

  81. Ren, J.G.: A new theory of laminated plate. Compos. Sci. Technol. 26(1), 225–39 (1986)

    Google Scholar 

  82. Mantari, J.L., Oktem, A.S., Soares, C.G.: A new trigonometric shear deformation theory for isotropic, laminated and sandwich plates. Int. J. Solids Struct. 49, 43–53 (2012)

    Google Scholar 

  83. Thai, C.H., Ferreira, A.J.M., Bordas, S.P.A., Rabczuk, T., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a new inverse trigonometric shear deformation theory. Eur. J. Mech. A Solids 43(1), 89–108 (2013)

    MATH  Google Scholar 

  84. Suganyadevi, S., Singh, B.N.: Assessment of composite and sandwich laminates using a new shear deformation theory. AIAA J. 54(2), 784–7 (2016)

    Google Scholar 

  85. Adhikari, B., Singh, B.N.: An efficient higher order non-polynomial Quasi 3-D theory for dynamic responses of laminated composite plates. Compos. Struct. 189, 386–397 (2017)

    Google Scholar 

  86. Soldatos, K.P.: A transverse shear deformation theory for homogeneous monoclinic plates. Acta Mech. 94(3–4), 195–220 (1992)

    MathSciNet  MATH  Google Scholar 

  87. Soldatos, K.P., Timarci, T.: A unified formulation of laminated composite, shear deformable five-degrees-of-freedom cylindrical shell theories. Compos. Struct. 25(3–4), 165–71 (1993)

    Google Scholar 

  88. Timarci, T., Soldatos, K.P.: Comparative dynamic studies for symmetric cross-ply circular cylindrical shells on the basis of a unified shear deformable shell theory. J. Sound Vib. 187(4), 609–24 (1995)

    MATH  Google Scholar 

  89. Aydogdu, M., Timarci, T.: Vibration analysis of cross-ply laminated square plates with general boundary conditions. Compos. Sci. Technol. 63(7), 1061–70 (2003)

    Google Scholar 

  90. Reddy, J.N.: A simple higher order shear deformation theory for laminated composite plates. J. Appl. Mech. 51(4), 745–53 (1984)

    MATH  Google Scholar 

  91. Caliri Jr., M.F., Ferreira, A.J.M., Tita, V.: A review on plate and shell theories for laminated and sandwich structures highlighting the finite element method. Compos. Struct. 156, 63–77 (2016)

    Google Scholar 

  92. Kreja, I.: A literature review on computational models for laminated composite and sandwich panels. Central Eur. J. Eng. 1(1), 59–80 (2011)

    Google Scholar 

  93. Khandan, R., Noroozi, S., Sewell, P., Vinney, J.: The development of laminated composite plate theories: a review. J. Mater. Sci. 47(16), 5901–10 (2012)

    Google Scholar 

  94. Fantuzzi, N., Tornabene, F.: Strong formulation finite element method for arbitrarily shaped laminated plates-Part II. Numer. Anal. Adv. Aircr. Spacecr. Sci. 1, 145–175 (2014)

    Google Scholar 

  95. Bacciocchi, M., Tarantino, A.M.: Modeling and numerical investigation of the viscoelastic behavior of laminated concrete beams strengthened by CFRP strips and carbon nanotubes. Constr. Build. Mater. 233, 117–311 (2020)

    Google Scholar 

  96. Jaberzadeh, E., Azhari, M.: Local buckling of moderately thick stepped skew viscoelastic composite plates using the element-free Galerkin method. Acta Mech. 226, 1011–1025 (2015)

    MathSciNet  MATH  Google Scholar 

  97. Fantuzzi, N., Tornabene, F., Bacciocchi, M., Neves, A.M.A., Ferreira, A.J.M.: Stability and accuracy of three Fourier expansion-based strong form finite elements for the free vibration analysis of laminated composite plates. Int. J. Numer. Eng. 111, 354–382 (2017)

    MathSciNet  Google Scholar 

  98. Wang, X., Yuan, Z.: Buckling analysis of isotropic skew plates under general in-plane loads by the modified differential quadrature method. Appl. Math. Model 56, 83–95 (2018)

    MathSciNet  MATH  Google Scholar 

  99. Fantuzzi, N., Tornabene, F.: Strong Formulation Isogeometric Analysis (SFIGA) for laminated composite arbitrarily shaped plates. Compos. Part B Eng. 96, 173–203 (2016)

    Google Scholar 

  100. Zenkour, A.M.: A comparative study for bending of cross-ply laminated plates resting on elastic foundations. Smart Struct. Syst. 15(6), 1569–1582 (2015)

    MathSciNet  Google Scholar 

  101. Upadyay, A.K., Shukla, K.K.: Post-buckling analysis of skew plates subjected to combined in-plane loadings. Acta Mech. 225, 2959–2968 (2014)

    MathSciNet  MATH  Google Scholar 

  102. Bacciocchi, M., Tarantino, A.M.: Time-dependent behavior of viscoelastic three-phase composite plates reinforced by Carbon nanotubes. Compos. Struct. 216, 20–31 (2019)

    Google Scholar 

  103. Thai, C.H., Ferreira, A.J.M., Wahab, M.A., Nguyen-Xuan, H.: A generalized layerwise higher-order shear deformation theory for laminated composite and sandwich plates based on isogeometric analysis. Acta Mech. 227, 1225–1250 (2016)

    MathSciNet  MATH  Google Scholar 

  104. Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under flexure. Acta Mech. 225(7), 2075–2083 (2014)

    MathSciNet  MATH  Google Scholar 

  105. Kim, J., Żur, K.K., Reddy, J.N.: Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos. Struct. 209, 879–888 (2019)

    Google Scholar 

  106. Barretta, R.: Analogies between Kirchhoff plates and Saint-Venant beams under torsion. Acta Mech. 224(5), 2955–2964 (2013)

    MathSciNet  MATH  Google Scholar 

  107. Civalek, O.: Vibration of functionally graded carbon nanotube reinforced quadrilateral plates using geometrictransformation discrete singular convolution method. Int. J. Numer. Eng. https://doi.org/10.1002/nme.6254

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Civalek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civalek, O., Jalaei, M.H. Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method. Acta Mech 231, 2565–2587 (2020). https://doi.org/10.1007/s00707-020-02653-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02653-3

Navigation