Skip to main content
Log in

Upscaling diffusion–reaction in porous media

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, we present the outlines of the periodic homogenization of the diffusion equation with chemical reaction at the interface, for different orders of magnitude of the Damköhler number. For large values of the Damköhler number, a non-classical homogenized model is obtained, where the homogenized diffusion tensor is strongly coupled with the chemical reaction rate. This homogenized model is particularly well adapted to describe, at the macroscopic level, diffusion with strong chemical reactions at the pore interfaces. The aim of this article is to highlight the transition between different regimes of diffusion–reaction according to the order of magnitude of the Damköhler number. In the last part of this work, we first consider a simple analytical example between two parallel plates, to understand the transition between the different possible regimes of diffusion–reaction. Finally, numerical simulations are performed on more complex two-dimensional elementary cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The variables with \((*)\) are dimensional variables.

  2. Let us quote that \(\left\langle c\right\rangle _{\varOmega _f}=c\).

  3. Where \(\left\langle c \right\rangle _{\varOmega _{f}}=\left\langle c \right\rangle _{\varOmega _{f}}\left( {\mathbf {x}},t\right) \).

  4. The subscript r is used for distinguishing the variable \(\mathbf {\chi }_{r}\) from the variable \(\mathbf {\chi }\) solution of problem (15), (16).

  5. We adopt the following simplification of notation: \(Da_l \equiv Da \) in Sect. 4

References

  1. Allaire, G., Brizzi, R., Mikelic, A., Piatnitski, A.: Two-scale expansion with drift approach to the Taylor dispersion for reactive transport through porous media. Chem. Eng. Sci. 65(7), 2292–2300 (2010)

    Article  Google Scholar 

  2. Allaire, G., Raphael, A.L.: Homogenization of a convection–diffusion model with reaction in a porous medium. Comptes Rendus Math. 344(8), 523–528 (2007)

    Article  MathSciNet  Google Scholar 

  3. Auriault, J.L., Boutin, C., Geindreau, C.: Homogenization of Coupled Phenomena in Heterogenous Media. ISTE, London (2009)

    Book  Google Scholar 

  4. Auriault, J.-L., Lewandowska, J.: Homogenization analysis of diffusion and adsorption macrotransport in porous media: macrotransport in the absence of advection. Géotechnique 43(3), 457–469 (1993)

    Article  Google Scholar 

  5. Auriault, J.-L., Lewandowska, J.: Diffusion/adsorption/advection macrotransport in soils. Euro. J. Mech. 15, 681–704 (1996)

    MATH  Google Scholar 

  6. Battiato, I., Tartakovsky, D.M.: Applicability regimes for macroscopic models of reactive transport in porous media. J. Contam. Hydrol. 120—-121, 18 (2011)

    Article  Google Scholar 

  7. Bensoussan, A., Lions, J.L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and its Applications. Elsevier Science Publishers, North Holland (1978)

    MATH  Google Scholar 

  8. Boso, F., Battiato, I.: Homogenizability conditions for multicomponent reactive transport. Adv. Water Resour. 62(Part B), 254–265 (2013). A tribute to Stephen Whitaker

    Article  Google Scholar 

  9. Bourbatache, K., Millet, O., Ait-Mokhtar, A.: Multi-scale periodic homogenization of ionic transfer in cementitious materials. Heat Mass Transf. 52(8), 1489–1499 (2016)

    Article  Google Scholar 

  10. Bourbatache, K., Millet, O., Ait-Mokhtar, A., Amiri, O.: Modeling the chlorides transport in cementitious materials by periodic homogenization. Transp. Porous Media 94, 437–459 (2012)

    Article  MathSciNet  Google Scholar 

  11. Bourbatache, K., Millet, O., Ait-Mokhtar, A., Amiri, O.: Chloride transfer in cement-based materials. part 1. theoretical basis and modelling. Int. J. Numer. Anal. Methods Geomech. 37, 1614–1627 (2013)

    Article  Google Scholar 

  12. Bourbatache, K., Millet, O., Ait-Mokhtar, A., Amiri, O.: Chloride transfer in cement-based materials. part 2. experimental study and numerical simulations. Int. J. Numer. Anal. Meth. Geomech. 37, 1628–1641 (2013)

    Article  Google Scholar 

  13. Bourbatache, K., Millet, O., Ait-Mokhtart, A.: Ionic transfer in charged porous media. Periodic homogenization and parametric study on 2d microstructures. Int. J. Heat Mass Transf. 55(21–22), 5979–5991 (2012)

    Article  Google Scholar 

  14. Cioranescu, D., Donato, P.: Homogénéisation du problème de neumann non homogène dans des ouverts perfores. Asymptot. Anal. 1(2), 115–138 (1988)

    Article  Google Scholar 

  15. Conca, C., Díaz, J.I., Timofte, C.: Effective chemical processes in porous media. Math. Models Methods Appl. Sci. 13(10), 1437–1462 (2003)

    Article  MathSciNet  Google Scholar 

  16. Dadvar, M., Sahimi, M.: The effective diffusivities in porous media with and without nonlinear reactions. Chem. Eng. Sci. 62(5), 1466–1476 (2007)

    Article  Google Scholar 

  17. de Lima, S.A., Murad, M.A., Moyne, C., Stemmelen, D.: A three-scale model of ph-dependent flows and ion transport with equilibrium adsorption in kaolinite clays: I. homogenization analysis. Transp. Porous Media 85(1), 23–44 (2010)

    Article  Google Scholar 

  18. Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: A brief review. J. Contam. Hydrol. 120–121(Supplement C), 1–17 (2011). Reactive Transport in the Subsurface: Mixing, Spreading and Reaction in Heterogeneous Media

    Article  Google Scholar 

  19. Edwards, D.A., Shapiro, M., Brenner, H.: Dispersion and reaction in two dimensional model porous media. Phys. Fluids A 5(4), 837–848 (1993)

    Article  Google Scholar 

  20. Hornung, U.: Homogenization and porous Media. IAM, Westminster (1997)

    Book  Google Scholar 

  21. Korneev, S., Battiato, I.: Sequential homogenization of reactive transport in polydisperse porous media. Multiscale Modeling & Simul. 14(4), 1301–1318 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lugo-Méndez, H.D., Valdés-Parada, F.J., Porter, M.L., Wood, B.D., Ochoa-Tapia, J.A.: Upscaling diffusion and nonlinear reactive mass transport in homogeneous porous media. Transp. Porous Media 107(3), 683–716 (2015)

    Article  MathSciNet  Google Scholar 

  23. Mauri, R.: Dispersion, convection, and reaction in porous media. Phys. Fluids A 3(5), 743–756 (1991)

    Article  MathSciNet  Google Scholar 

  24. Moyne, C., Murad, M.A.: Electro-chemo-mechanical couplings in swelling clays derived from a micro/macro-homogenization procedure. Int. J. Solids Struct. 39(25), 6159–6190 (2002)

    Article  Google Scholar 

  25. Moyne, C., Murad, M.A.: A two-scale model for coupled electro-chemo-mechanical phenomena and Onsager’s reciprocity relations in expansive clays: I homogenization analysis. Transp. Porous Media 62(3), 333–380 (2006)

    Article  MathSciNet  Google Scholar 

  26. Murad, M.A., Moyne, C.: A dual-porosity model for ionic solute transport in expansive clays. Comput. Geosci. 12(1), 47 (2007)

    Article  MathSciNet  Google Scholar 

  27. Porta, G.M., Chaynikov, S., Thovert, J.F., Riva, M., Guadagnini, A., Adler, P.M.: Numerical investigation of pore and continuum scale formulations of bimolecular reactive transport in porous media. Adv. Water Resour. 62(Part B), 243–253 (2013). A tribute to Stephen Whitaker

    Article  Google Scholar 

  28. Porta, G.M., Riva, M., Guadagnini, A.: Upscaling solute transport in porous media in the presence of an irreversible bimolecular reaction. Adv. Water Resour. 35(Supplement C), 151–162 (2012)

    Article  Google Scholar 

  29. Qiu, T., Wang, Q., Yang, C.: Upscaling multicomponent transport in porous media with a linear reversible heterogeneous reaction. Chem. Eng. Sci. 171, 100–116 (2017)

    Article  Google Scholar 

  30. Rubinstein, J., Mauri, R.: Dispersion and convection in periodic porous media. SIAM J. Appl. Math. 46(6), 1018–1023 (1986)

    Article  MathSciNet  Google Scholar 

  31. Palencia, E.S.: Non Homogeneous Media and Vibration Theory. Lecture Notes in Physics, vol. 129. Springer, Berlin (1980)

    MATH  Google Scholar 

  32. Shapiro, M., Brenner, H.: Dispersion of a chemically reactive solute in a spatially periodic model of a porous medium. Chem. Eng. Sci. 43(3), 551–571 (1988)

    Article  Google Scholar 

  33. Valdes-Parada, F.J., Aguilar-Madera, C.G., Allvarez-Ramirez, J.: On diffusion, dispersion and reaction in porous media. Chem. Eng. Sci. 66(10), 2177–2190 (2011)

    Article  Google Scholar 

  34. Valdes-Parada, F.J., Alvarez-Ramirez, J.: On the effective diffusivity under chemical reaction in porous media. Chem. Eng. Sci. 65(13), 4100–4104 (2010)

    Article  Google Scholar 

  35. Valdes-Parada, F.J., Porter, Mark L., Wood, Brian D.: The role of tortuosity in upscaling. Transp. Porous Media 88(1), 1–30 (2011)

    Article  MathSciNet  Google Scholar 

  36. Valdés-Parada, F.J., Lasseux, D., Whitaker, S.: Diffusion and heterogeneous reaction in porous media: the macroscale model revisited. Int. J. Chem. React. Eng. (2017). https://doi.org/10.1515/ijcre-2017-0151

    Article  Google Scholar 

  37. van Duijn, C.J., Mikelic, A., Pop, I.S., Rosier, C.: Effective dispersion equations for reactive flows with dominant Peclet and Damköhler numbers. In: Marin, G., West, D., Yablonsky, G. (eds.) Advances in Chemical Engineering, vol. 34, pp. 1–45. Academic Press, Cambridge (2008)

    Google Scholar 

  38. Whitaker, S.: The Method of Averaging. Kluwer Academic Publisher, Boston (1998)

    Google Scholar 

  39. Wood, B.D., Whitaker, S.: Diffusion and reaction in biofilms. Chem. Eng. Sci. 53(3), 397–425 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support by the GdRI Multi-physics and Multi-scale Couplings in Geo-environmental Mechanics (GdRI GeoMech).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Bourbatache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourbatache, M.K., Millet, O. & Moyne, C. Upscaling diffusion–reaction in porous media. Acta Mech 231, 2011–2031 (2020). https://doi.org/10.1007/s00707-020-02631-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02631-9

Keywords

Navigation