Skip to main content
Log in

Analytical solutions of electroelastic fields in piezoelectric thin-film multilayer: applications to piezoelectric sensors and actuators

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Analytical expressions are derived for the stresses and electric fields induced in a piezoelectric multilayer deposited on a substrate with lattice misfit and thermal expansion coefficient mismatch. The piezoelectric multilayer can be subjected to an externally applied force, moment and electric potential. The derived formulations can model any number of layers using recursive relations that minimize the computation time. A proper rotation matrix is utilized to generalize the derived expressions to accommodate various orientations allowing each layer to have hexagonal crystal symmetry. The influence of lattice misfit and thermal expansion coefficient mismatch in the presence of externally applied force, moment and electric potential on the state of the electroelastic fields in each layer is evaluated for various applications. Comparison with finite element analysis results shows excellent agreement. The analytical expressions developed here can be useful in designing electromechanical sensors, actuators and optoelectronic devices made from piezoelectric multilayers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yoshikava, S., Shrout, T.: Multilayer piezoelectric actuators—structures and reliability. AIAA/ASME/ASCEI/AHSIASC Struct. Dyn. Mater. Conf. 34, 3581–3586 (1993)

    Google Scholar 

  2. Uchino, K., Takahashi, S.: Multilayer ceramic actuators. Sol. Stat. Mater. Sci. 1, 698–705 (1996)

    Google Scholar 

  3. Pritchard, J., Bowen, C.R., Lowrie, F.: Multilayer actuators: review. Brit. Cer. Trans. 100–6, 265–273 (2001)

    Google Scholar 

  4. Stoney, G.G.: The tension of metallic films deposited by electrolysis. Proc. R. Soc. Lond. (A) 82, 172–175 (1909)

    Google Scholar 

  5. Timoshenko, S.: Analysis of bi-metal thermostats. J. Opt. Soc. Am. 11–3, 233–255 (1925)

    Google Scholar 

  6. Townsend, P.H., Barnett, D.M.: Elastic relationships in layered composite media with approximation for the case of thin films on a thick substrate. J. Appl. Phys. 62, 4438 (1987)

    Google Scholar 

  7. Freund, L.B.: The stress distribution and curvature of a general compositionally graded semiconductor layer. J. Cryst. Growth 132(1–2), 341–344 (1993)

    Google Scholar 

  8. Freund, L.B.: Some elementary connections between curvature and mismatch strain in compositionally graded thin films. J. Mech. Phys. Solids 44–5, 723–736 (1996)

    Google Scholar 

  9. Freund, L.B., Floro, J.A., Chosan, E.: Extensions of the Stoney formula for substrate curvature to configurations with thin substrates or large deformations. Appl. Phys. Lett. 74–14, 1987–1989 (1999)

    Google Scholar 

  10. Hsueh, C.H., De Jonghe, L.C., Lee, C.S.: Modeling of thermal stresses in joining two layers with multi- and graded interlayers. J. Am. Soc. 89–1, 251–257 (2006)

    Google Scholar 

  11. Zhang, N.H.: Thermoelastic stresses in multilayered beams. Thin Solid Films 515, 8402–8406 (2007)

    Google Scholar 

  12. Hu, Y.Y., Huang, W.M.: Elastic and elastic-plastic analysis of multilayer thin films: closed-form solutions. J. Appl. Phys. 96, 4154–4160 (2004)

    Google Scholar 

  13. Malzbender, J.: Mechanical and thermal stresses in multilayered materials. J. Appl. Phys. 95–4, 1780–1782 (2004)

    Google Scholar 

  14. Ghasemt-Nejhad, M.N., Pan, C., Feng, H.: Intrinsic strain modeling and residual stress analysis for thin-film processing of layered structures. J. Electr. Packag. 125, 4–17 (2003)

    Google Scholar 

  15. Feng, X., Huwang, Y., Rosakis, A.J.: Stresses in a multilayer thin film/substrate system subjected to nonuniform temperature. Int. J. Sol. Struct. 45, 3688–3698 (2008)

    Google Scholar 

  16. Feng, X., Huwang, Y., Rosakis, A.J.: Multi-layer thin films/substrate system subjected to non-uniform misfit strains. J. Appl. Mech. 75, 021022–1021022-7 (2008)

    Google Scholar 

  17. Gao, C., Zhao, Z., Li, X.: Modeling of thermal stresses in elastic multilayer coating systems. J. Appl. Phys. 117, 055305 (2015)

    Google Scholar 

  18. Im, J., Kim, S., Roh, Y.: Design and evaluation of piezoelectric bimorphs combined with multilayer actuator. J. Korean Phys. Soc. 32, S1251–S1253 (1998)

    Google Scholar 

  19. Chee, C.Y.K., Tong, L., Stevan, G.P.: A mixed model for composite beams with piezoelectric actuators and sensors. Smart Mater. Struct. 8, 417–432 (1999)

    Google Scholar 

  20. Ali, R., Mahapatra, D.R., Gopalakrishnan, S.: An analytical model of constrained piezoelectric thin film sensors. Sens. Actuators 116, 424–437 (2004)

    Google Scholar 

  21. Li, X.F., Lee, K.Y.: Electric and elastic behaviors of a piezoelectric ceramic with a charged surface electrode. Smat Mater. Struct. 13, 424–432 (2004)

    Google Scholar 

  22. Narita, F., Shindo, Y., Hayashi, K.: Bending and polarization switching of piezoelectric laminated actuators under electromechanical loading. Comput. Struct. 83, 1164–1170 (2005)

    Google Scholar 

  23. Narita, F., Hasegawa, R., Shindo, Y.: Electromechanical response of multilayer piezoelectric actuators for fuel injectors at high temperatures. J. Appl. Phys. 115, 184103 (2014)

    Google Scholar 

  24. Zhang, H.-Y., Wang, B.L.: Modeling multilayer piezoelectric actuators in a residual temperature field. J. Therm. Stress. 31, 246–259 (2008)

    Google Scholar 

  25. Sinha, N., Wabiszewski, G.E., Mahameed, R., Felmetsger, V.V., Tanner, S.M., Carpick, R.W., Piazza, G.: Ultra thin AlN piezoelectric nano-actuators. Transducers, Denver, CO, USA (2009)

  26. Xu, T.B., Xiang, X., Su, J.: A piezoelectric multilayer-stacked hybrid actuation/transduction system. Appl. Phys. Lett. 98, 243503 (1–3) (2011)

    Google Scholar 

  27. Dong, X., Peng, Z., Hua, H., Meng, G.: Modeling of the thickness electric potentials of a piezoelectric bimorphs using spectral element method. Sensor 14, 3477–3492 (2014)

    Google Scholar 

  28. Tolliver, L., Xu, T.B., Jiang, X.: Finite element analysis of the piezoelectric stacked-HYBATS transducers. Smart Mater. Struct. 22, 035015 (1–11) (2013)

    Google Scholar 

  29. Yong, Y.K., Fleming, A.J., Moheimani, S.O.R.: A novel piezoelectric strain sensor for simultaneous damping and tracking control of a high-speed nanopositioner. IEEE/ASME Trans. Mechtronic. 18–3, 1113–1121 (2013)

    Google Scholar 

  30. Yuan, S., Zhao, Y., Chu, X., Zhu, C., Zhong, Z.: Analysis and experimental research of a multilayer linear piezoelectric actuator. Appl. Sci. 225(6), 1–12 (2016)

    Google Scholar 

  31. Farnandes, A., Pouget, J.: An accurate modeling of piezoelectric multilayer plates. Eur. J. Mech. A/Solids 21, 629–651 (2002)

    MathSciNet  Google Scholar 

  32. Vasques, C.M.A., Rodrigues, J.D.: Coupled three layered analysis of smart piezoelectric beams with different electric boundary conditions. Int. J. Numer. Methods Eng. 62, 1488–1518 (2005)

    MATH  Google Scholar 

  33. Christmas, U.M.E., Andreev, A.D., Faux, D.A.: Calculation of electric field and optical transitions in InGaN/GaN quantum wells. J. Appl. Phys. 98, 073522 (1–12) (2005)

    Google Scholar 

  34. Jang, D.H., Yoo, K., Shim, J.I., Kor, J.: A new strain analysis model in epitaxial multilayer system. Phys. Soc. 57–4, 787–792 (2010)

    Google Scholar 

  35. Vittoz, S., Rufer, L., Rehder, G., Heinle, U., Benkart, P.: Analytical and numerical modeling of AlGaN/GaN/AlN heterostructure based cantilevers for mechanical sensing in harsh environments. Proc. Eng. 5, 91–94 (2010)

    Google Scholar 

  36. Vittoz, S., Rufer, L., Rehder, G., Heinle, U., Benkart, P.: Analytical and numerical modeling of AlGaN/GaN/AlN heterostructure based cantilevers for mechanical sensing in harsh environments. Sens. Actuators A 172, 27–34 (2011)

    Google Scholar 

  37. Mishra, D., Lee, S.H., Seo, Y., Pak, Y.E.: Modeling of stresses and electric fields in piezoelectric multilayer: application to multi quantum wells. AIP Adv. 7, 075306 (1–14) (2017)

    Google Scholar 

  38. El-Sayed, A.M., Abo-Ismail, A., El-Melegy, M.T., Hamzaid, N.A., Osman, N.A.A.: Development of a micro-gripper using piezoelectric bimorphs. Sensors 13, 5826–5840 (2013)

    Google Scholar 

  39. Morkock, H., Cingolani, R., Gill, B.: Polarization effects in nitride semiconductor device structures and performance modulation doped field effect transistors. Sol. Stat. Electron. 43–10, 1909–1927 (1999)

    Google Scholar 

  40. Sun, Q., Han, J.: GaN and ZnO based Materials and Devices, Vol. 156, Springer Series in Material Science. Springer, Berlin (2012)

  41. Wieman, R., Smith, R.C., Kackley, T., Ounaies, Z., Bernd, J.: Displacement models for THUNDER actuators having general loads and boundary conditions. Proc SPIE 4326, 25263 (2001)

    Google Scholar 

  42. Cappozzoli, M., Gopalakrishnan, J., Hogan, K., Massad, J., Tokarchik, T., Wilmarth, S., Banks, H.T., Mossi, K.M., Smith, R.C.: Modeling aspects concerning thunder actuators. In: Proceeding of the Smart Structures and Materials 1999: Mathematics and Control in Smart Structures, Vol. 3667, Newport Beach, CA, USA (1999)

  43. Kim, Y., Cai, L., Usher, T., Jiang, Q.: Fabrication and characterization of THUNDER actuators pre-stress-induced nonlinearity in the actuation response. Smart Mater. Struct. 18, 095033 (1–7) (2009)

    Google Scholar 

  44. Berlincourt, D.A., Curran, D.R., Jaffe, H.: Piezoelectric and piezomagnetic materials and their function in transducers. In: Mason, W.P. (Ed.) Physical Acoustics 1A, p. 177. Academic Press, New York (1964)

  45. Bougrov, V., Levinshtein, M.E., Rumyantsev, S.L., Zubrilov, A.: Properties of Advanced Semiconductor Materials, pp. 1–30. Wiley, New York (2001)

    Google Scholar 

Download references

Acknowledgements

The Korea National Research Foundation supported this work with the Grants NRF-2014M1A3A3A02034928 and NRF-2016R1D1A1B03932553. The authors would also like to acknowledge the support provided by NRF Korea and DST India under Indo—Korea research fund with NRF-2017K1A3A1A68072861 Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Eugene Pak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A1

Constitutive relations for piezoelectric materials with the z-direction as c-axis exhibiting transversely isotropic behavior (hexagonal symmetry) can be written in the form [44]:

$$\begin{aligned} \left\{ \begin{array}{l}\sigma _{xx}\\ \sigma _{yy}\\ \sigma _{zz}\\ \sigma _{zy}\\ \sigma _{zx}\\ \sigma _{xy}\end{array}\right\}= & {} \left[ \begin{array}{cccccc}c_{11} &{}\quad c_{12} &{}\quad c_{13} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ c_{12} &{}\quad c_{11} &{}\quad c_{13} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ c_{13} &{}\quad c_{13} &{}\quad c_{33} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad c_{44} &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad c_{44} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1}{2}(c_{11}-c_{12})\end{array}\right] \left\{ \begin{array}{l} \varepsilon _{xx} \\ \varepsilon _{yy} \\ \varepsilon _{zz} \\ 2\varepsilon _{zy} \\ 2\varepsilon _{zx} \\ 2\varepsilon _{xy} \end{array}\right] \,\, - \,\, \left[ \begin{array}{ccc} 0 &{}\quad 0 &{}\quad e_{31} \\ 0 &{}\quad 0 &{}\quad e_{31} \\ 0 &{}\quad 0 &{}\quad e_{33} \\ 0 &{}\quad e_{15} &{}\quad 0 \\ e_{15} &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 \end{array}\right] \left\{ \begin{array}{l} E_{x} \\ E_{y} \\ E_{z} \end{array}\right\} , \qquad \qquad \nonumber \\ \left\{ \begin{array}{c}D_{1} \\ D_{2} \\ D_{3} \end{array}\right\}= & {} \left[ \begin{array}{cccccc} 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad e_{15} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad e_{15} &{}\quad 0 &{}\quad 0 \\ e_{31} &{}\quad e_{31} &{}\quad e_{33} &{}\quad 0 &{}\quad 0 &{}\quad 0 \end{array}\right] \left\{ \begin{array}{c} \varepsilon _{xx} \\ \varepsilon _{yy} \\ \varepsilon _{zz} \\ 2\varepsilon _{zy} \\ 2\varepsilon _{zx} \\ 2\varepsilon _{xy} \end{array}\right\} \,\, + \,\, \left[ \begin{array}{ccc}\epsilon _{11} &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad \epsilon _{11} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \epsilon _{33} \end{array}\right] \left\{ \begin{array}{c}E_{x} \\ E_{y} \\ E_{z} \end{array}\right\} + \left\{ \begin{array}{c}0 \\ 0 \\ P_\mathrm{sp} \end{array}\right\} , \end{aligned}$$
(A1.1)

Appendix A2

The layer-wise stresses and electric displacements calculation procedures have been listed in this section as follows:

Appendix A2.1

The in-plane and the out-of-plane shear strains are obtained from Eq. (11) as

$$\begin{aligned} \varepsilon _{zy}^{\mathrm{Tot}^i}= & {} -{1\over 2A_{{II}_{1}}^i} \left[ A_{{II}_2}^i E_x^{\mathrm{Tot}^{i}}+ A_{{II}_3}^i E_y^{\mathrm{Tot}^{i}} + A_{{II}_4}^i E_z^{\mathrm{Tot}^{i}} \right] , \nonumber \\ \varepsilon _{zx}^{\mathrm{Tot}^i}= & {} -{1\over 2A_{{II}_{1}}^i} \left[ A_{{II}_5}^i E_x^{\mathrm{Tot}^{i}}+ A_{{II}_6}^i E_y^{\mathrm{Tot}^{i}} + A_{{II}_7}^i E_z^{\mathrm{Tot}^{i}} \right] , \nonumber \\ \varepsilon _{xy}^{\mathrm{Tot}^i}= & {} -{1\over 2A_{{II}_{1}}^i} \left[ A_{{II}_8}^i E_x^{\mathrm{Tot}^{i}}+ A_{{II}_9}^i E_y^{\mathrm{Tot}^{i}} + A_{{II}_{10}}^i E_z^{\mathrm{Tot}^{i}} \right] , \end{aligned}$$
(A2.1)

where

$$\begin{aligned} A_{{II}_{1}}^i= & {} A_{{II}_{11}}^i A_{{II}_{23}}^{i^2} + A_{{II}_{22}}^i A_{{II}_{13}}^{i^2} +A_{{II}_{33}}^i A_{{II}_{12}}^{i^2} -2 A_{{II}_{12}}^i A_{{II}_{13}}^i A_{{II}_{23}}^i - A_{{II}_{11}}^i A_{{II}_{22}}^i A_{{II}_{33}}^i, \\ A_{{II}_2}^i= & {} P_{{II}_{11}}^i A_{{II}_2}^i+ P_{{II}_{21}}^i A_{{II}_3}^i + P_{{II}_{31}}^i A_{{II}_4}^i, \qquad A_{{II}_3}^i = P_{{II}_{12}}^i A_{{II}_2}^i + P_{{II}_{22}}^i A_{{II}_3}^i +P_{{II}_{32}}^i A_{{II}_4}^i, \\ A_{{II}_4}^i= & {} P_{{II}_{13}}^i A_{{II}_2}^i+P_{{II}_{23}}^i A_{{II}_3}^i+P_{{II}_{33}}^i A_{{II}_4}^i, \qquad A_{{II}_5}^i = P_{{II}_{11}}^i A_{{II}_5}^i+ P_{{II}_{21}}^i A_{{II}_6}^i + P_{{II}_{31}}^i A_{{II}_7}^i, \\ A_{{II}_6}^i= & {} P_{{II}_{12}}^i A_{{II}_5}^i + P_{{II}_{22}}^i A_{{II}_6}^i +P_{{II}_{32}}^i A_{{II}_7}^i, \qquad A_{{II}_7}^i = P_{{II}_{13}}^i A_{{II}_5}^i+P_{{II}_{23}}^i A_{{II}_6}^i+P_{{II}_{33}}^i A_{{II}_7}^i, \\ A_{{II}_8}^i= & {} P_{{II}_{11}}^i A_{{II}_8}^i+ P_{{II}_{21}}^i A_{{II}_9}^i + P_{{II}_{31}}^i A_{{II}_{10}}^i, \qquad A_{{II}_9}^i = P_{{II}_{12}}^i A_{{II}_8}^i + P_{{II}_{22}}^i A_{{II}_9}^i +P_{{II}_{32}}^i A_{{II}_{10}}^i, \\ A_{{II}_{10}}^i= & {} P_{{II}_{13}}^i A_{{II}_8}^i+P_{{II}_{23}}^i A_{{II}_9}^i+P_{{II}_{33}}^i A_{{II}_{10}}^i, \qquad A_{{II}_{11}}^i = A_{{II}_{23}}^i (A_{{II}_{22}}^i - A_{{II}_{23}}^i), \\ A_{{II}_{12}}^i= & {} A_{{II}_{13}}^i A_{{II}_{23}}^i -A_{{II}_{12}}^i A_{{II}_{23}}^i, \qquad \qquad A_{{II}_{13}}^i = A_{{II}_{12}}^i A_{{II}_{23}}^i - A_{{II}_{13}}^i A_{{II}_{22}}^i, \\ A_{{II}_{14}}^i= & {} A_{{II}_{23}}^i A_{{II}_{13}}^i -A_{{II}_{12}}^i A_{{II}_{33}}^i, \qquad \qquad A_{{II}_{15}}^i = A_{{II}_{11}}^i A_{{II}_{33}}^i - A_{{II}_{13}}^{i^2}, \\ A_{{II}_{16}}^i= & {} A_{{II}_{12}}^i A_{{II}_{13}}^i -A_{{II}_{11}}^i A_{{II}_{23}}^i, \qquad \qquad A_{{II}_{17}}^i = A_{{II}_{12}}^i A_{{II}_{23}}^i - A_{{II}_{13}}^{i} A_{{II}_{22}}^{i}, \\ A_{{II}_{18}}^i= & {} A_{{II}_{12}}^i A_{{II}_{13}}^i -A_{{II}_{11}}^i A_{{II}_{23}}^i, \qquad \qquad A_{{II}_{19}}^i = A_{{II}_{11}}^i A_{{II}_{22}}^i - A_{{II}_{12}}^{i^2}. \end{aligned}$$

The in-plane electric field components (\(E_x\) and \(E_y\)) calculated in terms of \(\varepsilon _{ij}\) and \(E_z\) with the boundary conditions \(D_x = D_y = 0\) (Eq. (12)) can be expressed as

$$\begin{aligned} E_x^{\mathrm{Tot}^{i}}= & {} {1\over P_1^i} \left[ P_2^i E_z^{\mathrm{Tot}^i} + P_3^i + P_4^i \varepsilon _{xx}^{\mathrm{Tot}^i} + P_5^i \varepsilon _{yy}^{\mathrm{Tot}^i} + P_6^i \varepsilon _{zz}^{\mathrm{Tot}^i}\right] , \nonumber \\ E_y^{\mathrm{Tot}^{i}}= & {} {1\over P_1^i} \left[ P_7^i E_z^{\mathrm{Tot}^i} + P_8^i + P_9^i \varepsilon _{xx}^{\mathrm{Tot}^i} + P_{10}^i \varepsilon _{yy}^{\mathrm{Tot}^i} + P_{11}^i \varepsilon _{zz}^{\mathrm{Tot}^i}\right] , \end{aligned}$$
(A2.2)

where the constants are

$$\begin{aligned} P_1^i= & {} \left( A_2^i A_4^i - A_1^i A_5^i\right) , \quad \quad \qquad P_2^i = \left( A_3^i A_5^i -A_2^i A_6^i \right) \quad \quad P_3^i =\left( A_2^i P_{{sp}_{yy}}^i -A_5^i P_{{sp}_{xx}}^i \right) ,\\ P_4^i= & {} \left( A_2 P_{I_{12}} - A_5 P_{I_{11}}\right) , \qquad \qquad P_5^i = \left( A_2 P_{I_{22}} -A_5 P_{I_{21}}\right) \qquad P_6^i = \left( A_2^i P_{I_{32}}^i - A_5^i P_{I_{31}}^i \right) ,\\ P_7^i= & {} \left( A_1^i A_6^i -A_3^i A_4^i\right) , \qquad \qquad P_8^i= \left( A_4^i P_{{sp}_{yy}}^i -A_1^i P_{{sp}_{xx}}^i \right) , \qquad \qquad P_9^i = \left( A_4 P_{I_{11}} - A_1 P_{I_{12}}\right) , \\ P_{10}^i= & {} \left( A_4^i P_{I_{21}}^i -A_1^i P_{I_{22}}^i\right) , \qquad \ P_{11}^i = \left( A_4^i P_{I_{31}}^i - A_1^i P_{I_{32}}^i\right) . \end{aligned}$$

Appendix A2.2

Here, we evaluate the in-plane stresses in different layers of the multilayer due to the input misfit strains (\(\varepsilon _{ij}^{M^i}\)). The externally applied mechanical load per unit area (\(F_z\)) at the top and bottom surfaces of the multilayer (Fig. 4) and the potential difference created along the thickness direction (Fig. 5) are also considered. Therefore, the top and bottom surfaces of the multilayer are neither traction nor charge free. The spontaneous polarization along the [0001] crystal direction in the hexagonal crystal are also considered in this section. According to the boundary conditions considered, the normal stress (\(\sigma _{zz}^{M^i}\)) and the electric displacement (\(D_z^{M^i}\)) along the thickness direction are continuous at the interface. We can calculate the normal strain (\(\varepsilon _{zz}^{M^i}\)) and the electric field (\(E_z^{M^i}\)) in the ith layer of the multilayer by using the equations for normal stress (\(\sigma _{zz}^{M^i}\)) and the electric displacement (\(D_z^{M^i}\)) from the constitutive relations (10) as

$$\begin{aligned} \varepsilon _{zz}^{{M}^i}= & {} -{1\over B_1^i} \left[ B_2^i \varepsilon _{xx}^{M^i} + B_3^i \varepsilon _{yy}^{M^i} - \left( D_z^{M^i} - {A_{18}^i \over A_{13}^i} F_{z}\right) + B_4^i\right] ,\nonumber \\ E_z^{{M}^i}= & {} {1\over A_{13}^i} \left[ B_5^i \varepsilon _{xx}^{M^i} + B_6^i \varepsilon _{yy}^{M^i} - B_7^i F_{z} + {A_{12}^i\over B_1^i}D_z^{M^i} - B_8^i \right] . \end{aligned}$$
(A2.3)

Substituting \(\varepsilon _{zz}^{{M}^i}\) and \(E_z^{{M}^i}\) in Eq. (10), the in-plane normal stresses, \(\sigma _{xx}^{{M}^i}\) and \(\sigma _{yy}^{{M}^i}\), can be expressed as

$$\begin{aligned} \sigma _{xx}^{{M}^i}= & {} B_9^i \varepsilon _{xx}^{{M}^i} + B_{10}^i \varepsilon _{yy}^{{M}^i} + B_{11}^i F_{z} - B_{12}^i D_z^{{M}^i} - B_{13}^i, \nonumber \\ \sigma _{yy}^{{M}^i}= & {} B_{14}^i \varepsilon _{xx}^{{M}^i} + B_{15}^i \varepsilon _{yy}^{{M}^i} + B_{16}^i F_{z} - B_{17}^i D_z^{{M}^i} - B_{18}^i. \end{aligned}$$
(A2.4)

Appendix A2.3

We would now like to derive the layer-wise electroelastic fields in the multilayer due to the in-plane reference strain components (\(\varepsilon _{xx}^N\) and \(\varepsilon _{yy}^N\)). Externally applied forces, applied electric potential and the spontaneous polarization along the [0001] crystal direction were not considered in this section. Therefore, the top and bottom surfaces of the multilayer were considered to be traction and charge free. This made the normal stress (\(\sigma _{zz}^{N^{i=0}}\)) and electric displacement (\(D_z^{N^{i=0}}\)) along the thickness direction to vanish. The electroelastic fields in this case are not position dependent (independent of z), therefore, \(\sigma _{zz}^{N^i}\) = \(D_z^{N^i} = 0\). This condition leads to

$$\begin{aligned} \varepsilon _{zz}^{{N}^i}= & {} -{1\over B_1^i} \left[ B_2^i \varepsilon _{xx}^{N} + B_3^i \varepsilon _{yy}^{N} \right] \qquad \qquad E_z^{{N}^i} = -{1\over A_{13}^i} \left[ B_5^i \varepsilon _{xx}^{N} + B_6^i \varepsilon _{yy}^{N} \right] . \qquad \end{aligned}$$
(A2.5)

Substitution of \(\varepsilon _{zz}^{N^i}\) and \(E_z^{N^i}\) into the constitutive relations, the in-plane stresses can be expressed as

$$\begin{aligned} \sigma _{xx}^{{N}^i}= & {} B_9^i \varepsilon _{xx}^{{N}} + B_{10}^i \varepsilon _{yy}^{{N}} \qquad \qquad \qquad \sigma _{yy}^{{N}^i} = B_{14}^i \varepsilon _{xx}^{{N}} + B_{15}^i \varepsilon _{yy}^{{N}}. \end{aligned}$$
(A2.6)

Appendix A2.4

The bending strains, \(\varepsilon _{xx}^B = K_x (z-\varPi _x)\), \(\varepsilon _{yy}^B = K_y (z-\varPi _x)\), are functions of z which varies linearly through the thickness. According to the boundary conditions considered, \(\sigma _{zz}^{i = 0} = \sigma _{zz}^{i = n} = D_z^{i = 0} = D_z^{i = n} = 0\). These conditions were used to calculate the normal strain (\(\varepsilon _{zz}^{B^{i=0}}\)) and the electric field (\(E_{z}^{B^{i=0}}\)) in the bottom layer, as well as the normal strain (\(\varepsilon _{zz}^{B^{i=n}}\)) and the electric field (\(E_{z}^{B^{i=n}}\)) in the top film layer along the thickness direction. Substituting these parameters in the constitutive relations (Eq. (10)), the in-plane stresses can be expressed as

$$\begin{aligned} \sigma _{xx}^{{B}^{i=0}}= & {} B_9^0 K_x \left( z - \varPi _x \right) + B_{10}^0 K_y \left( z - \varPi _y \right) , \qquad \sigma _{yy}^{{B}^{i=0}} = B_{14}^0 K_x \left( z -\varPi _x \right) + B_{15}^0 K_y \left( z - \varPi _y \right) , \nonumber \\ \sigma _{xx}^{{B}^{i=n}}= & {} B_9^n K_x (z - \varPi _x) + B_{10}^n K_y (z- \varPi _y), \qquad \sigma _{yy}^{{B}^{i=n}} = B_{14}^n K_x (z -\varPi _x) + B_{15}^n K_y (z - \varPi _y). \end{aligned}$$
(A2.7)

Utilizing the continuity conditions of the stress and electric displacement in the thickness direction at the interface, we can obtain the normal strain (\(\varepsilon _{zz}^{{i+1}}\)) and the electric field (\(E_z^{i+1}\)) as

$$\begin{aligned} \varepsilon _{zz}^{i+1}= & {} \left[ B_5^{i+1} K_x(z-\varPi _x) + B_6^{i+1} K_y (z-\varPi _y) + B_{7}^{i+1}\varepsilon _{zz}^{B^i} - B_8^{i+1} E_z^{B^i}\right] ,\nonumber \\ E_z^{i+1}= & {} {1\over B_4^{i+1}} {\left[ B_1^{i+1}K_x(z-\varPi _x) + B_2^{i+1} K_y (z-\varPi _y) + B_{3}^{i+1}\varepsilon _{zz}^{B^i} - A_{13}^i A_{17}^{i+1} E_z^{B^i} \right] }. \end{aligned}$$
(A2.8)

Substitution of \(\varepsilon _{zz}^{i+1}\) and \(E_z^{i+1}\) in the in-plane normal stress components of the \((i+1)\)th layer gives

$$\begin{aligned} \sigma _{xx}^{i+1}= & {} B_{9}^{i+1} K_x \left( z - \varPi _x\right) + B_{10}^{i+1}K_y \left( z - \varPi _y \right) + B_{11}^{i+1} \varepsilon _{zz}^{B^i} - B_{12}^{i+1} E_{z}^{B^i}, \nonumber \\ \sigma _{yy}^{i+1}= & {} B_{13}^{i+1}K_x \left( z - \varPi _x\right) + B_{14}^{i+1} K_y \left( z - \varPi _y\right) + B_{15}^{i+1}\varepsilon _{zz}^{B^i} - B_{16}^{i+1} E_{z}^{B^i}. \end{aligned}$$
(A2.9)

The constants \(A_1^i\) through \(A_{28}^i\) and \(B_1^i\) through \(B_{28}^i\) as well as \(B_{1}^{i+1}\) through \(B_{16}^{i+1}\) are as follows:

$$\begin{aligned} A_1^i= & {} {1\over A_{{II}_1}^i} \left( P_{{II}_{11}}^i A_{{II}_2}^i + P_{{II}_{21}}^i A_{{II}_5}^i + P_{{II}_{31}}^i A_{{II}_8}^i \right) - \kappa _{11}^i, \\ A_2^i= & {} {1\over A_{{II}_1}^i} \left( P_{{II}_{11}}^i A_{{II}_3}^i + P_{{II}_{21}}^i A_{{II}_6}^i + P_{{II}_{31}}^i A_{{II}_9}^i \right) - \kappa _{12}^i, \\ A_3^i= & {} {1\over A_{{II}_1}^i} \left( P_{{II}_{11}}^i A_{{II}_4}^i + P_{{II}_{21}}^i A_{{II}_7}^i + P_{{II}_{31}}^i A_{{II}_{10}}^i \right) - \kappa _{13}^i, \\ A_4^i= & {} {1\over A_{{II}_1}^i} \left( P_{{II}_{12}}^i A_{{II}_2}^i + P_{{II}_{22}}^i A_{{II}_5}^i + P_{{II}_{32}}^i A_{{II}_8}^i \right) - \kappa _{21}^i, \\ A_5^i= & {} {1\over A_{{II}_1}^i} \left( P_{{II}_{12}}^i A_{{II}_3}^i + P_{{II}_{22}}^i A_{{II}_6}^i + P_{{II}_{32}}^i A_{{II}_9}^i \right) - \kappa _{22}^i, \\ A_6^i= & {} {1\over A_{{II}_1}^i} \left( P_{{II}_{12}}^i A_{{II}_4}^i + P_{{II}_{22}}^i A_{{II}_7}^i + P_{{II}_{32}}^i A_{{II}_{10}}^i \right) - \kappa _{23}^i, \\ A_7^i= & {} {1\over A_{{II}_1}^i} \left( P_{{II}_{13}}^i A_{{II}_2}^i + P_{{II}_{23}}^i A_{{II}_5}^i + P_{{II}_{33}}^i A_{{II}_8}^i \right) - \kappa _{31}^i, \\ A_8^i= & {} {1\over A_{{II}_1}^i} \left( P_{{II}_{13}}^i A_{{II}_3}^i + P_{{II}_{23}}^i A_{{II}_6}^i + P_{{II}_{33}}^i A_{{II}_9}^i \right) - \kappa _{32}^i, \\ A_9^i= & {} {1\over A_{{II}_1}^i} \left( P_{{II}_{13}}^i A_{{II}_4}^i + P_{{II}_{23}}^i A_{{II}_7}^i + P_{{II}_{33}}^i A_{{II}_{10}}^i \right) - \kappa _{33}^i, \\ A_{10}^i= & {} A_{I_{31}}^i - P_{I_{31}}^i {P_4^i \over P_1^i} - P_{I_{32}}^i {P_9^i \over P_1^i}, \qquad \qquad \qquad A_{11}^i = A_{I_{32}}^i - P_{I_{31}}^i {P_5^i \over P_1^i} - P_{I_{32}}^i {P_{10}^i \over P_1^i}, \\ A_{12}^i= & {} A_{I_{33}}^i - P_{I_{31}}^i {P_6^i \over P_1^i} - P_{I_{32}}^i {P_{11}^i \over P_1^i}, \qquad \qquad \qquad A_{13}^i = P_{I_{31}}^i {P_2^i \over P_1^i} + P_{I_{32}}^i {P_7^i \over P_1^i} + P_{I_{33}}^i, \\ A_{14}^i= & {} P_{I_{31}}^i {P_3^i \over P_1^i} + P_{I_{32}}^i {P_8^i \over P_1^i} , \qquad \qquad \qquad \qquad A_{15}^i = P_{I_{13}}^i - A_7^i {P_4^i \over P_1^i} - A_8^i {P_9^i \over P_1^i}, \\ A_{16}^i= & {} P_{I_{23}}^i - A_7^i {P_5^i \over P_1^i} - A_8^i {P_{10}^i \over P_1^i}, \qquad \qquad \qquad A_{17}^i = P_{I_{33}}^i - A_7^i {P_6^i \over P_1^i} - A_8^i {P_{11}^i \over P_1^i}, \\ A_{18}^i= & {} A_9^i + A_7^i {P_2^i \over P_1^i} + A_8^i {P_9^i \over P_1^i}, \\ A_{19}^i= & {} A_{I_{11}}^i - P_{I_{11}}^i {P_4^i \over P_1^i} - P_{I_{12}}^i {P_9^i \over P_1^i}, \qquad \qquad A_{20}^i = A_{I_{12}}^i - P_{I_{11}}^i {P_5^i \over P_1^i} - P_{I_{12}}^i {P_{10}^i \over P_1^i}, \\ A_{21}^i= & {} A_{I_{13}}^i - P_{I_{11}}^i {P_6^i \over P_1^i} - P_{I_{12}}^i {P_{11}^i \over P_1^i}, \qquad \qquad A_{22}^i = P_{I_{13}}^i + P_{I_{11}}^i {P_2^i \over P_1^i} + P_{I_{12}}^i {P_7^i \over P_1^i}, \\ A_{23}^i= & {} P_{I_{11}}^i {P_3^i \over P_1^i} + P_{I_{12}}^i {P_8^i \over P_1^i}, \qquad \qquad \qquad \qquad A_{24}^i = A_{I_{21}}^i - P_{I_{21}}^i {P_4^i \over P_1^i} - P_{I_{22}}^i {P_9^i \over P_1^i}, \\ A_{25}^i= & {} A_{I_{22}}^i - P_{I_{21}}^i {P_5^i \over P_1^i} - P_{I_{22}}^i {P_{10}^i \over P_1^i}, \qquad \qquad A_{26}^i = A_{I_{23}}^i - P_{I_{21}}^i {P_6^i \over P_1^i} - P_{I_{22}}^i {P_{11}^i \over P_1^i}, \nonumber \\ A_{27}^i= & {} P_{I_{23}}^i + P_{{II}_{21}}^i {P_2^i \over P_1^i} + P_{{II}_{22}}^i {P_{7}^i \over P_1^i}, \qquad \qquad A_{28}^i = P_{I_{21}}^i {P_3^i \over P_1^i} + P_{I_{22}}^i {P_{8}^i \over P_1^i}, \\ B_1^i= & {} A_{17}^i - A_{12}^i {A_{18}^i \over A_{13}^i}, \qquad \qquad \qquad \qquad \qquad B_2^i = A_{15}^i - A_{10}^i {A_{18}^i \over A_{13}^i}, \\ B_3^i= & {} A_{16}^i - A_{11}^i {A_{18}^i \over A_{13}^i}, \qquad \qquad \qquad \qquad \qquad B_4^i = P_{{sp}_{zz}} + {A_{14}^i A_{18}^i \over A_{13}^i}, \\ B_5^i= & {} A_{10}^i - {A_{12}^i B_{2}^i \over B_1^i}, \qquad \qquad \qquad \qquad \qquad B_6^i = A_{11}^i - {A_{12}^i B_{3}^i \over B_1^i}, \\ B_7^i= & {} 1 + {A_{12}^i A_{18}^i \over A_{13}^i B_1^i}, \qquad \qquad \qquad \qquad \qquad B_8^i = A_{14}^i + A_{12}^i {B_4^i \over B_1^i}, \\ B_9^i= & {} A_{19}^i - A_{21}^i {B_{2}^i \over B_{1}^i} - {A_{22}^i B_{5}^i \over A_{13}^i}, \qquad \qquad \qquad B_{10}^i = A_{20}^i - A_{21}^i {B_{3}^i \over B_{1}^i} - {A_{22}^i B_{6}^i \over A_{13}^i}, \\ B_{11}^i= & {} {A_{18}^i A_{21}^i \over A_{13}^i B_{1}^i} + {A_{22}^i B_{7}^i \over A_{13}^i}, \qquad \qquad \qquad \qquad B_{12}^i = {A_{21}^i \over B_1^i} + {A_{12}^i A_{22}^i \over A_{13}^i B_{1}^i}, \\ B_{13}^i= & {} {A_{21}^i B_{4}^i \over B_{1}^i} - {A_{22}^i B_{8}^i \over A_{13}^i} + A_{23}^i, \qquad \qquad \qquad B_{14}^i = A_{24}^i - A_{26}^i {B_{2}^i \over B_{1}^i} - {A_{27}^i B_{5}^i \over A_{13}^i}, \\ B_{15}^i= & {} A_{25}^i - A_{26}^i {B_{3}^i \over B_{1}^i} - {A_{27}^i B_{6}^i \over A_{13}^i}, \qquad \qquad \qquad \qquad B_{16}^i = {A_{18}^i A_{26}^i\over A_{13}^i B_1^i} + {A_{27}^i B_{7}^i \over A_{13}^i}, \\ B_{17}^i= & {} {A_{26}^i \over B_{1}^i} + {A_{12}^i A_{27}^i \over A_{13}^i B_{1}^i}, \qquad \qquad \qquad \qquad \qquad \qquad B_{18}^i = {A_{26}^i B_{4}^i \over B_{1}^i} - {A_{27}^i B_{8}^i \over A_{13}^i}, \\ B_1^{i+1}= & {} A_{12}^{i+1} \left( A_{15}^i - A_{15}^{i+1} \right) - A_{17}^{i+1} \left( A_{10}^i - A_{10}^{i+1} \right) \qquad B_2^{i+1} = A_{12}^{i+1} \left( A_{16}^i - A_{16}^{i+1} \right) - A_{17}^{i+1} \left( A_{11}^i - A_{11}^{i+1} \right) , \nonumber \\ B_3^{i+1}= & {} \left( A_{12}^{i+1}A_{17}^i - A_{12}^i A_{17}^{i+1} \right) , \qquad \qquad \qquad \qquad B_4^{i+1} = \left( A_{13}^{i+1} A_{17}^{i+1} - A_{12}^{i+1} A_{18}^{i+1} \right) , \\ B_5^{i+1}= & {} {1\over A_{12}^{i+1} } \left[ \left( A_{10}^i - A_{10}^{i+1} \right) + {A_{13}^{i+1} B_1^{i+1} \over B_5^{i+1}} \right] , \qquad \qquad \qquad B_6^{i+1} = {1\over A_{12}^{i+1} } \left[ \left( A_{11}^i - A_{11}^{i+1} \right) + {A_{13}^{i+1} B_2^{i+1} \over B_5^{i+1}} \right] , \\ B_7^{i+1}= & {} {1\over A_{12}^{i+1} } \left[ A_{12}^i + {A_{13}^{i+1} B_3^{i+1} \over B_5^{i+1}} \right] \qquad \qquad \qquad \qquad B_8^{i+1} = {1\over A_{12}^{i+1} } \left[ A_{13}^i + {A_{13}^{i+1} B_4^{i+1} \over B_5^{i+1}} \right] , \\ B_{9}^{i+1}= & {} \left[ A_{{19}}^{i+1} + A_{{21}}^{i+1}B_6^{i+1} - A_{{22}}^{i+1} {B_1^{i+1} \over B_5^{i+1}} \right] , \qquad \qquad \qquad B_{10}^{i+1} = \left[ A_{{20}}^{i+1} + A_{{21}}^{i+1}B_7^{i+1} - A_{{22}}^{i+1} {B_2^{i+1} \over B_5^{i+1}} \right] , \\ B_{11}^{i+1}= & {} \left[ A_{{21}}^{i+1}B_8^{i+1} - A_{{22}}^{i+1} {B_3^{i+1} \over B_5^{i+1}} \right] , \qquad \qquad \qquad \qquad B_{12}^{i+1} = \left[ A_{{21}}^{i+1}B_9^{i+1} - A_{{22}}^{i+1} {A_{13}^i A_{17}^{i+1} \over B_5^{i+1}} \right] , \nonumber \\ B_{13}^{i+1}= & {} \left[ A_{{24}}^{i+1} + A_{{26}}^{i+1}B_6^{i+1} - A_{{27}}^{i+1} {B_1^{i+1} \over B_5^{i+1}} \right] , \qquad \qquad \qquad B_{14}^{i+1} = \left[ A_{{25}}^{i+1} + A_{{26}}^{i+1}B_7^{i+1} - A_{{27}}^{i+1} {B_2^{i+1} \over B_5^{i+1}} \right] , \nonumber \\ B_{15}^{i+1}= & {} \left[ A_{{26}}^{i+1}B_8^{i+1} - A_{{27}}^{i+1} {B_3^{i+1} \over B_5^{i+1}} \right] , \qquad \qquad \qquad \qquad B_{16}^{i+1} = \left[ A_{{26}}^{i+1}B_9^{i+1} - A_{{27}}^{i+1} {B_4^{i+1} \over B_5^{i+1}} \right] . \end{aligned}$$

Appendix A3

The material properties of gallium nitride (GaN) [32, 33], aluminum nitride (AlN) [40, 45], PZT 5A [25], stainless steel, aluminum and the adhesive layer, LARC-SI [42], are listed in Table 2.

Table 2 Material properties of materials and alloys used for various types of sensors and actuators

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, D., Yoon, S., Seo, Y. et al. Analytical solutions of electroelastic fields in piezoelectric thin-film multilayer: applications to piezoelectric sensors and actuators. Acta Mech 231, 1435–1459 (2020). https://doi.org/10.1007/s00707-019-02582-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02582-w

Navigation