Skip to main content
Log in

Numerical simulation of conducting droplet impact on a surface under an electric field

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this study, conducting droplet impact on a wall under an electric field is simulated by adopting a sharp approach for interface modeling. The level-set method is used for the purpose of interface capturing. The ghost fluid method is adopted to impose discontinuities at the interface. According to the results, the maximum spreading radius of the droplet decreases as the electric field strength increases. In addition, the electric stresses have a tendency to elongate the droplet in the direction of the electric field. Increasing the electric field strength increases the droplet elongation. For stronger electric fields, the droplet is elongated with a higher rate. For contact angles greater than \(90^{\circ }\) (where the droplet rebounding is possible), increasing the electric field strength increases the contact time between the droplet and the surface. Moreover, for stronger electric fields, the droplet contact time increases with a higher rate. For contact angles less than \(90^{\circ }\), the rebounding stage does not occur and the droplet reaches an equilibrium state after a while. In this case, under stronger electric fields, a small droplet may detach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Smith, M.I., Bertola, V.: Effect of polymer additives on the wetting of impacting droplets. Am. Phys. Soc. 104, 154502 (2010)

    Google Scholar 

  2. Worthington, A.M.: On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. 25, 261–272 (1877)

    Article  Google Scholar 

  3. Bussmann, M., Chandra, S., Mostaghimi, J.: Modeling of a droplet impacting on solid surface. Phys. Fluids 12, 3121–3132 (2000)

    Article  Google Scholar 

  4. Gunjal, P.R., Ranade, V.V., Chaudhari, R.V.: Dynamics of drop impact on solid surface: experiments and VOF Simulations. Am. Inst. Chem. Eng. J. 51, 59–78 (2005)

    Article  Google Scholar 

  5. Gatne, K.P.: Experimental investigation of droplet impact dynamics on solid surfaces. PhD Thesis, University of Cincinnati, Cincinnati (2006)

  6. Muradoglu, M., Tasoglu, M.: A front-tracking method for computational modeling of impact and spreading of viscous droplets on solid walls. Comput. Fluids 39, 615–625 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bokil, S.A.: On computational modeling of dynamic drop surface interaction during post-impact spreading of water and aqueous surfactant solution. M.Sc. Thesis, University of Cincinnati, Cincinnati (2013)

  8. Griebel, M., Klits, M.: Simulation of droplet impact with dynamic contact angle boundary conditions. In: Griebel, M. (ed.) Singular Phenomena and Scaling in Mathematical Models. Springer, Cham (2014)

    Chapter  Google Scholar 

  9. Hu, J., Jio, R., Huang, X., Xiong, X., Wan, K.: Numerical simulation of the dynamics of water droplet impingement on a wax surface. In: 2015 ASEE northeast section conference (2015)

  10. Zhang, Q., Qian, T.Z., Wang, X.P.: Phase field simulation of a droplet impacting a solid surface. Phys. Fluids 28, 02210 (2016)

    Google Scholar 

  11. Emdadi, M., Pournaderi, P.: Study of droplet impact on a wall using a sharp interface method and different contact line models. J. Appl. Fluid Mech. 12, 1001–1012 (2019)

    Article  Google Scholar 

  12. Brazier-Smith, P.R.: The stability of a water drop oscillating with finite amplitude in an electric field. J. Fluid Mech. 50, 417–430 (1971)

    Article  Google Scholar 

  13. Dubash, N., Mestel, A.J.: Breakup behavior of a conducting drop suspended in a viscous fluid subject to an electric field. Phys. Fluids 19, 072101 (2007)

    Article  Google Scholar 

  14. Teigen, K.E., Munkejord, S.T.: Influence of surfactant on drop deformation in an electric field. Phys. Fluids 22, 358–369 (2010)

    Article  Google Scholar 

  15. Lopez-Herrera, J.M., Popinet, S., Herrada, M.A.: A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys. 230, 1939–1955 (2011)

    Article  MathSciNet  Google Scholar 

  16. Paknemat, H., Pishevar, A.R., Pournaderi, P.: Numerical simulation of drop deformations and breakup modes caused by direct current electric field. Phys. Fluids 24, 102101 (2012)

    Article  Google Scholar 

  17. Gong, H., Peng, Y., Yang, Z., Shang, H., Zhang, X.: Stable deformation of droplets surface subjected to a high-voltage electric field in oil. Colloids Surf. A Physicochem. Eng. Asp. 468, 315–321 (2015)

    Article  Google Scholar 

  18. He, L., Huang, X., Luo, X., Yan, H., Lu, Y., Yang, D., Han, Y.: Numerical study on transient response of droplet deformation in a steady electric field. J. Electrost. 82, 29–37 (2016)

    Article  Google Scholar 

  19. Huang, X., He, L., Luo, X., Yang, D., Shi, K., Yan, H.: Breakup mode transformation of leaky dielectric droplet under direct current electric field. Int. J. Multiph. Flow 96, 123–133 (2017)

    Article  MathSciNet  Google Scholar 

  20. Santra, S., Mandal, S., Chakraborty, S.: Electrohydrodynamics of confined two-dimensional liquid droplets in uniform electric field. Phys. Fluids 30, 062003 (2018)

    Article  Google Scholar 

  21. Cui, Y., Wang, N., Liu, H.: Numerical study of droplet dynamics in a steady electric field using a hybrid lattice Boltzmann and finite volume method. Phys. Fluids 31, 022105 (2019)

    Article  Google Scholar 

  22. Annapragda, S.R., Dash, S., Garimella, S.: Dynamics of droplet motion under electrowetting actuation. Langmuir 27, 8198–8204 (2011)

    Article  Google Scholar 

  23. Tsakonas, C., Corson, L., Sage, I., Brown, C.: Electric field induced deformation of hemispherical sessile droplets of ionic liquid. J. Electrost. 72, 437–440 (2014)

    Article  Google Scholar 

  24. Corson, L.T., Tsakonas, C., Duffy, B.R., Mottram, N.J., Sage, I.C., Brown, C.V., Wilson, S.: Deformation of a nearly hemispherical conducting drop due to an electric field: theory and experiment. Phys. Fluids 26, 122106 (2014)

    Article  Google Scholar 

  25. Ghazian, O., Adamiak, K., Castle, G.S.P.: Spreading and retraction control of charged dielectric droplets. Colloids Surf. A Physicochem. Eng. Asp. 448, 23–33 (2014)

    Article  Google Scholar 

  26. Lu, Y., Sur, A., Pascente, C., Annapragada, S.R., Ruchhoeft, P., Liu, D.: Dynamics of droplet motion induced by electrowetting. Int. J. Heat Mass Transf. 106, 920–931 (2017)

    Article  Google Scholar 

  27. Almohammadi, H., Amirfazli, A.: Sessile drop evaporation under an electric field. Colloids Surf. A Physicochem. Eng. Asp. 555, 580–585 (2018)

    Article  Google Scholar 

  28. Nazari, H., Pournaderi, P.: The electric field effect on the droplet collision with a heated surface in the Leidenfrost regime. Acta Mech. 230, 787–804 (2019)

    Article  MathSciNet  Google Scholar 

  29. Lima, N.C., d’Avila, M.A.: Numerical simulation of electrohydrodynamic flows of Newtonian and viscoelastic droplets. J. Non-Newton. Fluid Mech. 213, 1–14 (2014)

    Article  Google Scholar 

  30. Saville, D.A.: Electrohydrodynamics: the Taylor–Melcher leaky dielectric model. Ann. Rev. Fluid Mech. 29, 27–64 (1997)

    Article  MathSciNet  Google Scholar 

  31. Kang, M., Fedkiw, R.P., Liu, X.D.: A boundary condition capturing method for multiphase incompressible flow. J. Sci. Comput. 21, 323–369 (2000)

    Article  MathSciNet  Google Scholar 

  32. Jiang, G.S., Shu, C.W.: Efficient Implementation of weighted ENO schemes. J. Comput. Phys. 126, 202228 (1996)

    Article  MathSciNet  Google Scholar 

  33. Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    Book  Google Scholar 

  34. Pournaderi, P., Pishevar, A.R.: A numerical investigation of droplet impact on a heated wall in the film boiling regime. Heat Mass Transf. 48, 1525–1538 (2012)

    Article  Google Scholar 

  35. Pournaderi, P., Pishevar, A.R.: The effects of the surface inclination on the hydrodynamics and thermodynamics of Leidenfrost droplets. J. Mech. 30, 145–151 (2014)

    Article  Google Scholar 

  36. Liu, X.D., Fedkiw, R.P., Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains. J. Comput. Phys. 160, 151–178 (2000)

    Article  MathSciNet  Google Scholar 

  37. Sikalo, S., Wilhelm, H.D., Roisman, I.V., Jakirlic, S., Tropea, C.: Dynamic contact angle of spreading droplets: experiments and simulation. Phys. Fluids 17, 062103 (2005)

    Article  Google Scholar 

  38. Malgarinos, I., Nikolopoulos, N., Marengo, M., Antonini, C., Gavaises, M.: VOF simulations of the contact angle dynamics during the drop spearding: standard models and new wetting force model. Adv. Colloid Interface Sci. 212, 1–20 (2014)

    Article  Google Scholar 

  39. Jiang, T.S., Soo-Gun, O., Slattery, J.C.: Correlation for dynamic contact angle. J. Colloid Interface Sci. 69, 74–77 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedram Pournaderi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emdadi, M., Pournaderi, P. Numerical simulation of conducting droplet impact on a surface under an electric field. Acta Mech 231, 1083–1103 (2020). https://doi.org/10.1007/s00707-019-02574-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02574-w

Navigation