Skip to main content
Log in

Centrosymmetric equilibrium of nested spherical inhomogeneities in first strain gradient elasticity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The first strain gradient linear elasticity theory (FSGLET) is invoked to study an inhomogeneity problem. In the setting of this centrosymmetric problem, a set of concentric hollow spheres made of different materials is considered to serve as a model for a multi-coated nanometer-sized particle which in turn can be introduced as a representative volume element (RVE) of a nanocomposite. Perfect bonding is assumed between each layer of the RVE, and this system is subjected to uniform internal and external pressures. In the context of the FSGLET, the boundary value problem (BVP) for this model is formulated rigorously in spherical coordinates and its solution is obtained by means of analytical and numerical techniques. Employing the solutions of this BVP, we examine the important cases of a two-phase RVE consisting only of filler and matrix phases and a three-phase RVE where a homogeneous or a functionally graded interphase is also taken into account. We determine the associated elastic fields inside the RVE for each of these cases to study the impact of size effects, presence or absence of an interphase and its material properties distribution on the elastic fields variations. Furthermore, based on a simple and natural definition for the effective bulk modulus of the RVE, this effective modulus is calculated in each of the aforementioned cases at different filler volume fractions and characteristic lengths, and relevant comparisons are made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Zhou, K., Hoh, H.J., Wang, X., Keer, L.M., Pang, J.H.L., Song, B., Wang, Q.J.: A review of recent works on inclusions. Mech. Mater. 60, 144–158 (2013)

    Article  Google Scholar 

  2. Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff, Leiden (1987)

    Book  Google Scholar 

  3. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. A Math. Phys. Eng. Sci. 241(1226), 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  4. Eshelby, J.D.: The elastic field outside an ellipsoidal inclusion. Proc. R. Soc. A Math. Phys. Eng. Sci. 252(1271), 561–569 (1959)

    MathSciNet  MATH  Google Scholar 

  5. Shodja, H.M., Sarvestani, A.S.: Elastic fields in double inhomogeneity by the equivalent inclusion method. J. Appl. Mech. 68(1), 3 (2001)

    Article  Google Scholar 

  6. Moschovidis, Z.A., Mura, T.: Two-ellipsoidal inhomogeneities by the equivalent inclusion method. J. Appl. Mech. 42(4), 847–852 (1975)

    Article  Google Scholar 

  7. Hori, M., Nemat-Nasser, S.: Double-inclusion model and overall moduli of multi-phase composites. Mech. Mater. 14(3), 189–206 (1993)

    Article  Google Scholar 

  8. Fond, C., Riccardi, A., Schirrer, R., Montheillet, F.: Mechanical interaction between spherical inhomogeneities: an assessment of a method based on the equivalent inclusion. Eur. J. Mech. A Solids 20(1), 59–75 (2001)

    Article  Google Scholar 

  9. Cheng, Z.Q., He, L.H.: Micropolar elastic fields due to a spherical inclusion. Int. J. Eng. Sci. 33(3), 389–397 (1995)

    Article  MathSciNet  Google Scholar 

  10. Li, S., Sauer, R.A., Wang, G.: A circular inclusion in a finite domain I. The Dirichlet–Eshelby problem. Acta Mech. 179(1–2), 67–90 (2005)

    Article  Google Scholar 

  11. Li, S., Sauer, R., Wang, G.: A circular inclusion in a finite domain II. The Neumann–Eshelby problem. Acta Mech. 179(1–2), 91–110 (2005)

    Google Scholar 

  12. Li, S., Sauer, R.A., Wang, G.: The Eshelby tensors in a finite spherical domain—part I: theoretical formulations. J. Appl. Mech. 74(4), 770 (2007)

    Article  MathSciNet  Google Scholar 

  13. Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27(4), 315–330 (1979)

    Article  Google Scholar 

  14. Luo, H.A., Weng, G.J.: On Eshelby’s inclusion problem in a three-phase spherically concentric solid, and a modification of Mori–Tanaka’s method. Mech. Mater. 6(4), 347–361 (1987)

    Article  Google Scholar 

  15. Mikata, Y., Taya, M.: Stress field in and around a coated short fiber in an infinite matrix subjected to uniaxial and biaxial loadings. J. Appl. Mech. 52(1), 19 (1985)

    Article  Google Scholar 

  16. Khorshidi, A., Shodja, H.M.: A spectral theory formulation for elastostatics by means of tensor spherical harmonics. J. Elast. 111(1), 67–89 (2013)

    Article  MathSciNet  Google Scholar 

  17. Pan, C., Yu, Q.: Investigation of an arbitrarily shaped inclusion embedded in a two-dimensional finite domain. Int. J. Mech. Sci. 126, 142–150 (2017)

    Article  Google Scholar 

  18. Zou, W.N., He, Q.C., Zheng, Q.S.: Inclusions in a finite elastic body. Int. J. Solids Struct. 49(13), 1627–1636 (2012)

    Article  Google Scholar 

  19. Dai, M., Sun, H.: Thermo-elastic analysis of a finite plate containing multiple elliptical inclusions. Int. J. Mech. Sci. 75, 337–344 (2013)

    Article  Google Scholar 

  20. Lubarda, V.A.: Circular inclusions in anti-plane strain couple stress elasticity. Int. J. Solids Struct. 40(15), 3827–3851 (2003)

    Article  Google Scholar 

  21. Xun, F., Hu, G., Huang, Z.: Effective in plane moduli of composites with a micropolar matrix and coated fibers. Int. J. Solids Struct. 41(1), 247–265 (2004)

    Article  Google Scholar 

  22. Haftbaradaran, H., Shodja, H.M.: Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites. Int. J. Solids Struct. 46(16), 2978–2987 (2009)

    Article  Google Scholar 

  23. Alemi, B., Shodja, H.M.: Effective shear modulus of solids reinforced by randomly oriented-aligned-elliptic multi-coated nanofibers in micropolar elasticity. Compos. Part B Eng. 143, 197–206 (2018)

    Article  Google Scholar 

  24. Shodja, H.M., Alemi, B.: Effective shear modulus of solids reinforced by randomly oriented-/aligned-elliptic nanofibers in couple stress elasticity. Compos. Part B Eng. 117, 150–164 (2017)

    Article  Google Scholar 

  25. Zibaei, I., Rahnama, H., Taheri-Behrooz, F., Shokrieh, M.M.: First strain gradient elasticity solution for nanotube-reinforced matrix problem. Compos. Struct. 112, 273–282 (2014)

    Article  Google Scholar 

  26. Sidhardh, S., Ray, M.C.: Exact solutions for elastic response in micro- and nano-beams considering strain gradient elasticity. Math. Mech. Solids 24, 895–918 (2018)

    Article  MathSciNet  Google Scholar 

  27. Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4(1), 109–124 (1968)

    Article  Google Scholar 

  28. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. Anal. 16(1), 51–78 (1964)

    Article  MathSciNet  Google Scholar 

  29. Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)

    Article  Google Scholar 

  30. Altan, S.B., Aifantis, E.C.: On the structure of the mode III crack-tip in gradient elasticity. Scr. Metall. Mater. 26(2), 319–324 (1992)

    Article  Google Scholar 

  31. Lam, D.C.C., Yang, F., Chong, A.C., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)

    Article  Google Scholar 

  32. Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)

    Article  MathSciNet  Google Scholar 

  33. Auffray, N., Le Quang, H., He, Q.C.: Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61(5), 1202–1223 (2013)

    Article  MathSciNet  Google Scholar 

  34. Rahnama, H.: Micromechanical stress analysis of long fiber composites. M.Sc. Thesis, Iran University of Science and Technology (2015)

  35. Rahnama, H., Shokrieh, M.M.: Axisymmetric equilibrium of an isotropic elastic solid circular finite cylinder. Math. Mech. Solids 24, 996–1029 (2018)

    Article  MathSciNet  Google Scholar 

  36. Gao, X.L., Park, S.K.: Analytical solution for a pressurized thick-walled spherical shell based on a simplified strain gradient elasticity theory. Math. Mech. Solids 14(9), 747–758 (2009)

    Article  MathSciNet  Google Scholar 

  37. Maple 15. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario

  38. Zare, Y.: Assumption of interphase properties in classical Christensen–Lo model for Young’s modulus of polymer nanocomposites reinforced with spherical nanoparticles. RSC Adv. 5(116), 95532–95538 (2015)

    Article  Google Scholar 

  39. Ramezani, S.: Nonlinear vibration analysis of micro-plates based on strain gradient elasticity theory. Nonlinear Dyn. 73(3), 1399–1421 (2013)

    Article  MathSciNet  Google Scholar 

  40. Sadeghi, H., Baghani, M., Naghdabadi, R.: Strain gradient elasticity solution for functionally graded micro-cylinders. Int. J. Eng. Sci. 50(1), 22–30 (2012)

    Article  MathSciNet  Google Scholar 

  41. Chu, L., Dui, G.: Exact solutions for functionally graded micro-cylinders in first gradient elasticity. Int. J. Mech. Sci. 148(April), 366–373 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The first author is indebted to his colleague and dear friend Iman Zibaei, who introduced him to the strange world of generalized continuum theories. Moreover, his unfailing kindness and support during preparing this work, useful comments and fruitful discussions on first versions of the manuscript are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Taheri-Behrooz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahnama, H., Salehi, S.D. & Taheri-Behrooz, F. Centrosymmetric equilibrium of nested spherical inhomogeneities in first strain gradient elasticity. Acta Mech 231, 1377–1402 (2020). https://doi.org/10.1007/s00707-019-02570-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02570-0

Navigation