Skip to main content
Log in

A fast meshfree technique for the coupled thermoelasticity problem

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper concerns a new and fast meshfree method for the linear coupled thermoelasticity problem. The resulting algorithm provides an attractive alternative to existing mesh-based and meshfree methods. Compared with mesh-based methods, the proposed technique inherits the advantages of meshfree methods allowing the use of scattered points instead of a predefined mesh. Compared with the existing meshfree methods, the proposed technique is truly meshless, requiring no background mesh for both trial and test spaces and, more importantly, numerical integrations are done over low-degree polynomials rather than complicated shape functions. In fact, this method mimics the known advantages of both meshless and finite element methods, where in the former triangulation is not required for approximation and in the latter the stiffness and mass matrices are set up by integration against simple polynomials. The numerical results of the present work concern the thermal and mechanical shocks in a finite domain considering classical coupled theory of thermoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostolakis, G., Dargush, G.F.: Variational methods in irreversible thermoelasticity: theoretical developments and minimum principles for the discrete form. Acta Mech. 224, 2065–2088 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atluri, S.N., Shen, S.: The Meshless Local Petrov–Galerkin (MLPG) Method. Tech Science Press, Encino (2002)

    MATH  Google Scholar 

  3. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  4. Bobaru, F., Mukhrejee, S.: Meshless approach to shape optimization of linear thermoelastic solids. Int. J. Numer. Methods Eng. 53, 765–796 (2003)

    Article  Google Scholar 

  5. Carter, J.P., Booker, J.R.: Finite element analysis of coupled thermoelasticity. Comput. Struct. 31, 73–80 (1989)

    Article  Google Scholar 

  6. Chen, J., Dargush, G.F.: BEM for dynamic proelastic and thermoelastic analysis. Int. J. Solids Struct. 32, 2257–2278 (1995)

    Article  MATH  Google Scholar 

  7. Ching, H.K., Yen, S.C.: Transient thermoelastic deformations of 2-D functionally graded beams under nonuniformly convective heat supply. Compos. Struct. 73, 381–393 (2006)

    Article  Google Scholar 

  8. Hetnarski, R.B., Eslami, M.R.: Thermal Stresses: Advanced Theory and Applications. Springer, Berlin (2009)

    MATH  Google Scholar 

  9. Hoghes, T., Pister, K., Taylor, R.: Implicit-explicit finite elements in nonlinear transient analysis. Comput. Methods Appl. Mech. Eng. 17–18, Part 1, 159–182 (1979)

    Article  MATH  Google Scholar 

  10. Hosseini-Tehrani, P., Eslami, M.R.: BEM analysis of thermal and mechanical shock in a two-dimensional finite domain considering coupled thermoelasticity. Eng. Anal. Bound. Elem. 24, 249–257 (2000)

    Article  MATH  Google Scholar 

  11. Jabbari, M., Eslami, M., Dehbani, H.: An exact solution for classic coupled thermoelasticity in spherical coordinates. J. Press. Vessel Technol. 31, 31201–31211 (2010)

    Article  Google Scholar 

  12. Jabbari, M., Eslami, M., Dehbani, H.: An exact solution for classic coupled thermoelasticity in cylindrical coordinates. J. Press. Vessel Technol. 133, 051,204 (2011)

    Article  Google Scholar 

  13. Mirzaei, D.: A new low-cost meshfree method for two and three dimensional problems in elasticity. Appl. Math. Model. 39, 7181–7196 (2015)

    Article  MathSciNet  Google Scholar 

  14. Mirzaei, D., Hasanpour, K.: Direct meshless local Petrov–Galerkin method for elastodynamic analysis. Acta Mech. 227, 619–632 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mirzaei, D., Schaback, R.: Direct meshless local Petrov–Galerkin (DMLPG) method: a generalized MLS approximation. Appl. Numer. Math. 33, 73–82 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mirzaei, D., Schaback, R., Dehghan, M.: On generalized moving least squares and diffuse derivatives. IMA J. Numer. Anal. 32, 983–1000 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nickell, R.E., Sackman, J.J.: Approximate solutions in linear, coupled thermoelasticity. J. Appl. Mech. 35, 255–266 (1968)

    Article  MATH  Google Scholar 

  18. Nowacki, W.: Thermo-Elasticity, 2nd edn. Pergamon Press, New York (1986)

    MATH  Google Scholar 

  19. Prevost, J.H., Tao, D.: Finite element analysis of dynamic coupled thermoelasticity problems with relaxation times. J. Appl. Mech. Trans. ASME 50, 817–822 (1983)

    Article  MATH  Google Scholar 

  20. Qian, L.F., Batra, R.C.: Transient thermoelastic deformations of thick functionally graded plate. J. Therm. Stresses 27, 705–740 (2004)

    Article  Google Scholar 

  21. Shahani, A.R., Bashusqeh, S.M.: Analytical solution of the coupled thermo-elasticity problem in a pressurized sphere. J. Therm. Stresses 36, 1283–1307 (2013)

    Article  Google Scholar 

  22. Shahani, A.R., Bashusqeh, S.M.: Analytical solution of the thermoelasticity problem in a pressurized thickwalled sphere subjected to transient thermal loading. Math. Mech. Solids 19, 135–151 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sladek, J., Sladek, V., Atluri, S.N.: A pure contour formulation for meshless local boundary integral equation method in thermoelasticity. CMES-Comput. Model. Eng. Sci. 2, 423–434 (2001)

    MathSciNet  MATH  Google Scholar 

  24. Sladek, J., Sladek, V., Solek, P., Tan, C.L., Zhang, C.: Two- and three-dimensional transient thermoelastic analysis by the MLPG method. CMES-Comput. Model. Eng. Sci. 47, 61–95 (2009)

    MathSciNet  MATH  Google Scholar 

  25. Sladek, V., Sladek, J.: Boundary integral equation method in thermoelasticity, part I: general analysis. Appl. Math. Model. 7, 241–253 (1984)

    Article  MATH  Google Scholar 

  26. Suh, I.G., Tosaka, N.: Application of the boundary elment method to three dimensioanl linear coupled thermoelasticity problems. Theor. Appl. Mech. 38, 169–175 (1989)

    MATH  Google Scholar 

  27. Tamma, K.K., Railkar, S.B.: On heat displacement based hybrid transfinite element formulations for uncoupled/coupled thermally induced stress wave propagation. J. Comput. Struct. 30, 1025–1036 (1988)

    Article  MATH  Google Scholar 

  28. Tanaka, M., Tanaka, K.: A boundary element approach to dynamic problems in coupled thermoelasticity. SM Arch. 6, 467–491 (1981)

    MATH  Google Scholar 

  29. Ting, E.C., Chen, H.C.: A unified numerical approach for thermal stress waves. Comput. Struct. 15, 165–175 (1982)

    Article  MATH  Google Scholar 

  30. Tosaka, N., Suh, I.G.: Boundary elment analysis of dynamic coupled thermoelasticity problems. Comput. Mech. 8, 331–342 (1991)

    Article  MATH  Google Scholar 

  31. Wagner, P.: Fundamental matrix of the system of dynamic linear thermoelasticity. J. Therm. Stresses 17, 549–565 (1994)

    Article  MathSciNet  Google Scholar 

  32. Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  33. Zheng, B.J., Gao, X.W., Kai, Y., Zhang, C.Z.: A novel meshless local Petrov–Galerkin method for dynamic coupled thermoelasticity analysis under thermal and mechanical shock loading. Eng. Anal. Bound. Elem. 60, 145–161 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davoud Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasanpour, K., Mirzaei, D. A fast meshfree technique for the coupled thermoelasticity problem. Acta Mech 229, 2657–2673 (2018). https://doi.org/10.1007/s00707-018-2122-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2122-6

Navigation