Skip to main content

Advertisement

Log in

An arc-shaped crack in nonlinear fully coupled thermoelectric materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We present a rigorous treatment to the problem of a circular-arc crack in an infinite thermoelectric solid subjected to a combined electrical and thermal loading. Formulating the problem in terms of the complex potentials and reducing it to the Hilbert arc problem, the solutions of quantities in both thermoelectric field and the associated thermoelastic field are presented in a closed form based on the electrically permeable and thermally insulated crack model. The results show that the fields of heat flux, energy flux, and stress exhibit the traditional square-root singularity at tips of arc crack. The applied electric current and energy flux generate both mode I and mode II stress intensity factors (SIFs), which are dependent on the loading direction, electric conductivity, thermal conductivity, central angle of the crack, and thermoelastic isotropy. Electrically induced SIF is a quadratic function of applied electric current density, and thermally induced SIF is a linear function of the imposed total energy flux. In addition, the effects of the loading direction and half crack angle on the thermal SIFs are also presented in a graphic form. This is the first theoretical paper to study the effect of the crack shape on the fracture of fully coupled thermoelectric materials by a rigorous inference of physics and mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowe, D.M.: Thermoelectrics Handbook: Macro to Nano. CRC Press, New York (2005)

    Book  Google Scholar 

  2. Snyder, G.J., Toberer, E.S.: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)

    Article  Google Scholar 

  3. Disalvo, F.J.: Thermoelectric cooling and power generation. Science 285(5428), 703–706 (1999)

    Article  Google Scholar 

  4. Riffat, S.B., Ma, X.L.: Thermoelectrics: a review of present and potential applications. Appl. Therm. Eng. 23(8), 913–935 (2003)

    Article  Google Scholar 

  5. Tritt, T.M., Subramanian, M.A.: Thermoelectric materials, phenomena, and applications: a bird’s eye view. Mater. Res. Soc. 31(3), 188–194 (2006)

    Article  Google Scholar 

  6. Bell, L.E.: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321(5895), 1457–1461 (2008)

    Article  Google Scholar 

  7. Hicks, L.D., Dresselhaus, M.S.: Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47(19), 12727 (1993)

    Article  Google Scholar 

  8. Venkatasubramanian, R., Siivola, E., Colpitts, T., et al.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001)

    Article  Google Scholar 

  9. Poudel, B., Hao, Q., Ma, Y., et al.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876), 634–638 (2008)

    Article  Google Scholar 

  10. Hochbaum, A.I., Chen, R., Delgado, R.D., et al.: Enhanced thermoelectric performance of rough silicon nanowires. Nature 451(7175), 163–167 (2008)

    Article  Google Scholar 

  11. Schmidt, R.D., Fan, X.F., Case, E.D., Sarac, P.B.: Mechanical properties of \(\text{ Mg }_{2}\text{ Si }\) thermoelectric materials with the addition of 0–4 vol% silicon carbide nanoparticles (SiCNP). J. Mater. Sci. 50(11), 4034–4046 (2015)

    Article  Google Scholar 

  12. Zhao, D.G., Tian, C.W., Liu, Y.T., Zhan, C.W., Chen, L.D.: High temperature sublimation behavior of antimony in \(\text{ CoSb }_{3}\) thermoelectric material during thermal duration test. J. Alloys Compd. 509(6), 3166–3171 (2011)

    Article  Google Scholar 

  13. Isoda, Y., Shinohara, Y., Imai, Y., Albart, N.I., Ohashi, O.: Thermal shock resistance and thermoelectric properties of boron doped iron disilicides. J. Jpn. Inst. Metall. 63(3), 391–396 (1999)

    Article  Google Scholar 

  14. Schmidt, R.D., Case, E.D., Giles, J., Ni, J.E., Hogan, T.P.: Room-temperature mechanical properties and slow crack growth behavior of Mg\(_{2}\)Si thermoelectric materials. J. Electron. Mater. 41(6), 1210–1216 (2012)

    Article  Google Scholar 

  15. Cui, J.L., Zhao, X.B., Zhao, W.M., Lu, Y.P.: Preparation, thermoelectric properties and interface analysis of n-type graded material \(\text{ FeSi }_{2}/\text{ Bi }_{2}\text{ Te }_{3}\). Mater. Sci. Eng. B Adv. 94(2), 223–228 (2002)

    Article  Google Scholar 

  16. Zhao, D.G., Geng, H.R., Teng, X.Y.: Fabrication and reliability evaluation of \(\text{ CoSb }_{3}\)/W-Cu thermoelectric element. J. Alloys Compd. 517(7), 198–203 (2012)

    Article  Google Scholar 

  17. Zhang, A.B., Wang, B.L.: Crack tip field in thermoelectric media. Theor. Appl. Fract. Mech. 66(16), 33–36 (2013)

    Article  Google Scholar 

  18. Song, H.P., Gao, C.F., Li, J.Y.: Two-dimensional problem of a crack in thermoelectric materials. Therm. Stress 38(3), 325–337 (2015)

    Article  Google Scholar 

  19. Zhang, A.B., Wang, B.L.: Temperature and electric potential fields of an interface crack in a layered thermoelectric or metal/thermoelectric material. Int. J. Therm. Sci. 104, 396–403 (2016)

    Article  Google Scholar 

  20. Zhang, A.B., Wang, B.L.: Explicit solutions of an elliptic hole or a crack problem in thermoelectric materials. Eng. Fract. Mech. 151, 11–21 (2016)

    Article  Google Scholar 

  21. Sevostianov, I., Kachanov, M.: On the elastic compliances of irregularly shaped cracks. Int. J. Fract. 114(3), 245–257 (2002)

    Article  Google Scholar 

  22. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Springer, Berlin (2013)

    Google Scholar 

  23. Sih, G.C., Paris, P.C., Erdogan, F.: Crack-tip, stress-intensity factors for plane extension and plate bending problems. J. Appl. Mech. 29(2), 306–312 (1962)

    Article  Google Scholar 

  24. England, A.H.: Complex Variable Methods in Elasticity. Courier Corporation, New York (2003)

    MATH  Google Scholar 

  25. Ioakimidis, N.I., Theocaris, P.S.: A system of curvilinear cracks in an isotropic elastic half-plane. Int. J. Fract. 15(4), 299–309 (1979)

    MathSciNet  Google Scholar 

  26. Datsyshin, A.P., Marchenko, G.P.: Interaction of curvilinear cracks with the boundary of an elastic half-plane. Mater. Sci. 20(5), 466–473 (1985)

    Article  Google Scholar 

  27. Cheung, Y.K., Woo, C.W., Wang, Y.H.: Stress intensity factors for a circular arc crack by boundary collocation method. Eng. Fract. Mech. 34(4), 841–849 (1989)

    Article  Google Scholar 

  28. Shiah, Y.C., Lin, Y.J.: An infinitely large plate weakened by a circular-arc crack subjected to partially distributed loads. J. Eng. Math. 49(1), 1–18 (2004)

    Article  MATH  Google Scholar 

  29. Zhong, Z., Meguid, S.A.: Analysis of a circular arc-crack in piezoelectric materials. Int. J. Fract. 84(2), 143–158 (1997)

    Article  Google Scholar 

  30. Zheng, M.M., Gao, C.F.: An arc-shaped crack in an electrostrictive material. Int. J. Eng. Sci. 48(9), 771–782 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lin, C.B., Chen, S.C., Lee, J.L.: Explicit solutions of magnetoelastic fields in a soft ferromagnetic solid with curvilinear cracks. Eng. Fract. Mech. 76(12), 1846–1865 (2009)

    Article  Google Scholar 

  32. Goupil, C., Seifert, W., Zabrocki, K., Muller, E., Snyder, G.J.: Thermodynamics of thermoelectric phenomena and applications. Entropy 13(8), 1481–1517 (2011)

    Article  MATH  Google Scholar 

  33. Yang, Y., Ma, F.Y., Lei, C.H., Liu, Y.Y., Li, J.Y.: Nonlinear asymptotic homogenization and the effective behavior of layered thermoelectric composites. J. Mech. Phys. Solids 61(8), 1768–1783 (2013)

    Article  MathSciNet  Google Scholar 

  34. Liu, L.: A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites. Int. J. Eng. Sci. 55(4), 35–53 (2012)

    Article  MathSciNet  Google Scholar 

  35. Zhang, A.B., Wang, B.L., Wang, J., Du, J.K., Xie, C.: Effect of cracking on the thermoelectric conversion efficiency of thermoelectric materials. J. Appl. Phys. 121(4), 045105 (2017)

    Article  Google Scholar 

  36. Hao, F., Fang, D.N., Li, J.Y.: Thermoelectric transport in heterogeneous medium: the role of thermal boundary resistance. Eur. Phys. J. Appl. Phys. 58, 443–443 (2012)

    Article  Google Scholar 

  37. Chao, C.K., Shen, M.H.: Thermal problem of curvilinear cracks in bonded dissimilar materials. J. Appl. Phys. 73(11), 7129–7137 (1993)

    Article  MATH  Google Scholar 

  38. Chung, H.D., Beom, H.G., Choi, S.Y., Earmme, Y.Y.: Thermoelastic analysis of circular arc-shaped cracks. J. Therm. Stress. 21(2), 129–140 (1998)

    Article  Google Scholar 

  39. Zhang, X.D., Du, Q.G., Jiang, X.Q., Gao, J.L.: Thermal stress and structural parameter selection of \(\text{ Bi }_{2}\text{ Te }_{3}\)-based thermoelectric modules. Chin. J. Power Sour. 35(4), 422–425 (2011)

    Google Scholar 

  40. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw Hill, New York (1951)

    MATH  Google Scholar 

  41. Tokovyy, Y., Ma, C.C.: Analytical solutions to the 2D elasticity and thermoelasticity problems for inhomogeneous planes and half-planes. Arch. Appl. Mech. 79(5), 441–456 (2009)

    Article  MATH  Google Scholar 

  42. Parkus, H.: Thermoelasticity. Springer, Berlin (2012)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cun-Fa Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Zou, D., Li, YH. et al. An arc-shaped crack in nonlinear fully coupled thermoelectric materials. Acta Mech 229, 1989–2008 (2018). https://doi.org/10.1007/s00707-017-2099-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2099-6

Navigation